当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plastic deformation and strengthening mechanism in CoNiV medium-entropy alloy fiber
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2024-03-03 , DOI: 10.1016/j.ijplas.2024.103929
Lin Deng , Ruixuan Li , Jinru Luo , Shilei Li , Xuefeng Xie , Shangshu Wu , Weiran Zhang , Peter K. Liaw , Elena A. Korznikova , Yong Zhang

High/medium-entropy alloys (H/MEAs) are regarded as a potentially viable alternative to conventional metallic fibers for the production of ductile, high-strength fibers, to resolve the inherent trade-off between strength and ductility. The present study involved the cold drawing technique to produce a CoNiV MEA fiber measuring 300 μm in diameter with a length of more than 3 m. The mechanical properties of the FCC matrix can be improved through the inclusion of an appropriate amount of the κ phase via the optimized thermal treatment process. In addition to a yield strength of 1681 MPa and a well-coordinated elongation of 13.4 %, the ideal CoNiV fiber demonstrated a substantial ultimate tensile strength of 1932 MPa. Further calculations revealed that the κ phase, which possesses a substantial Von Mises stress of approximately 2715 MPa and an area fraction of 18.2 ± 1.1 %, was observed to be a primary contributor to the strength. Deformation twins were generated in the FCC matrix as a result of the ultra-high flow stress, which provided adequate ductility. This study offers significant contributions to the understanding of the deformation mechanisms and strengthening effect of the κ phase, thereby facilitating the development of high-performance metallic fibers.

中文翻译:

CoNiV中熵合金纤维的塑性变形与强化机制

高/中熵合金(H/MEA)被认为是传统金属纤维的潜在可行替代品,用于生产延展性高强度纤维,以解决强度和延展性之间固有的权衡问题。本研究采用冷拉技术生产直径为 300 μm、长度超过 3 m 的 CoNiV MEA 光纤。通过优化的热处理工艺,加入适量的κ相可以提高FCC基体的机械性能。除了 1681 MPa 的屈服强度和 13.4% 的协调一致的伸长率之外,理想的 CoNiV 纤维还表现出 1932 MPa 的极限拉伸强度。进一步的计算表明,κ 相具有约 2715 MPa 的较大 Von Mises 应力和 18.2 ± 1.1 % 的面积分数,被认为是强度的主要贡献者。由于超高流变应力,FCC 基体中产生了变形孪晶,从而提供了足够的延展性。这项研究为理解κ相的变形机制和强化效应做出了重大贡献,从而促进了高性能金属纤维的开发。
更新日期:2024-03-03
down
wechat
bug