当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Topological Hall Effect in CoGd Films Controlled by Hydrogen Migration under Gate Voltage
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2024-03-18 , DOI: 10.1002/aelm.202300752
Xue Ren 1, 2 , Liang Liu 1 , Bin Cui 1 , Bin Cheng 1 , Xiangxiang Zhao 1 , Taiyu An 1 , Ruiyue Chu 1 , Mingfang Zhang 1 , Weikang Liu 1 , Guangjun Zhou 1 , Weijie Kuai 1 , Jifan Hu 1
Affiliation  

The topological Hall effect (THE) presents hump signals in the Hall resistance versus magnetic field hysteresis loop, showing promise for future spintronics due to its robust chiral magnetic textures. Here, it is shown that solid‐state protonic gating can control possible topological magnetic structures in CoGd thin films. Injecting H+ leads to sizable hump signals in the film. Magneto‐optical Kerr microscopy shows that induced hump signals in transporting measurements do not scale with magnetization, supporting topological magnetism. Successive hydrogen ion extraction completely erases the effect. Thus, topological magnetism manipulations are reversible, nonvolatile, and effective. Ab inito calculations and effective chiral spin models demonstrate that hydrogen injection remarkably enhances the Dzyaloshinskii–Moriya interaction over fourfold, stabilizing chiral structures contributing to the large THE. These findings reveal the vital role of hydrogen ions in topological magnetism and suggest that amorphous ferrimagnetic CoGd thin films are outstanding platforms for realizing controllable topological spintronics at room temperature.

中文翻译:

栅极电压下氢气迁移控制 CoGd 薄膜中的拓扑霍尔效应

拓扑霍尔效应 (THE) 在霍尔电阻与磁场磁滞回线中呈现驼峰信号,由于其强大的手性磁性纹理,显示出未来自旋电子学的前景。研究表明,固态质子门控可以控制 CoGd 薄膜中可能的拓扑磁结构。注射H+导致影片中出现相当大的驼峰信号。磁光克尔显微镜表明,传输测量中感应的驼峰信号不随磁化强度变化,支持拓扑磁性。连续的氢离子提取完全消除了这种影响。因此,拓扑磁操纵是可逆的、非易失性的且有效的。从头计算和有效的手性自旋模型表明,氢注入显着增强了 Dzyaloshinskii-Moriya 相互作用四倍以上,稳定了手性结构,从而形成了大THE。这些发现揭示了氢离子在拓扑磁性中的重要作用,并表明非晶亚铁磁性CoGd薄膜是在室温下实现可控拓扑自旋电子学的杰出平台。
更新日期:2024-03-18
down
wechat
bug