当前位置: X-MOL 学术Opt. Fiber Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
What comes after optical-bypass network? A study on optical-computing-enabled network
Optical Fiber Technology ( IF 2.7 ) Pub Date : 2024-03-13 , DOI: 10.1016/j.yofte.2024.103730
Dao Thanh Hai

A new architectural paradigm, named, optical-computing-enabled network, is proposed as a potential evolution of the currently used optical-bypass framework. The main idea is to leverage the optical computing capabilities performed on transitional lightpaths at intermediate nodes and such proposal reverses the conventional wisdom in optical-bypass network, that is, separating in-transit lightpaths in avoidance of unwanted interference. In optical-computing-enabled network, the optical nodes are therefore upgraded from conventional functions of add-drop and cross-connect to include optical computing/processing capabilities. This is enabled by exploiting the superposition of in-transit lightpaths for computing purposes to achieve greater capacity efficiency. While traditional network design and planning algorithms have been well-developed for optical-bypass framework in which the routing and resource allocation is dedicated to each optical channel (lightpath), more complicated problems arise in optical-computing-enabled architecture as a consequence of intricate interaction between optical channels and hence resulting into the establishment of the so-called integrated/computed lightpaths. This necessitates for a different framework of network design and planning to maximize the impact of optical computing opportunities. In highlighting this critical point, a detailed case study exploiting the optical aggregation operation to re-design the optical core network is investigated in this paper. Optical aggregation enables the combination of lower-speed and/or lower-order format channels into a single higher-rate and/or higher-order format one for saving spectrum resources and such new perspective give rises to major challenges involving aggregation assignments. Specifically, the determination of demands for aggregation, the nodes at which the optical aggregation takes place and the wavelength selection for aggregated lightpaths constitute a critical issue to be tackled. Numerical results obtained from extensive simulations on the COST239 network are presented to quantify the efficacy of optical-computing-enabled approach versus the conventional optical-bypass-enabled one.

中文翻译:

光旁路网络之后会发生什么?光计算网络的研究

提出了一种新的架构范例,称为光计算网络,作为当前使用的光旁路框架的潜在演进。主要思想是利用在中间节点的过渡光路上执行的光计算能力,这种建议颠覆了光旁路网络中的传统观点,即分离传输中的光路以避免不必要的干扰。因此,在光计算网络中,光节点从传统的分插和交叉连接功能升级为包括光计算/处理能力。这是通过利用传输中的光路的叠加来实现计算目的,以实现更高的容量效率。虽然传统的网络设计和规划算法已经针对光旁路框架得到了很好的发展,其中路由和资源分配专用于每个光通道(光路),但由于复杂的计算结构,在支持光计算的架构中出现了更复杂的问题。光通道之间的相互作用,从而导致所谓的集成/计算光路的建立。这就需要采用不同的网络设计和规划框架,以最大限度地发挥光计算机会的影响。为了强调这一关键点,本文研究了利用光聚合操作重新设计光核心网络的详细案例研究。光聚合能够将较低速度和/或低阶格式信道组合成单个较高速率和/或高阶格式通道,以节省频谱资源,并且这种新观点带来了涉及聚合分配的重大挑战。具体而言,聚合需求的确定、发生光聚合的节点以及聚合光路的波长选择构成了需要解决的关键问题。通过对 COST239 网络进行广泛模拟获得的数值结果可以量化光计算方法与传统光旁路方法相比的效率。
更新日期:2024-03-13
down
wechat
bug