当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-03-20 , DOI: 10.1039/d4ee00986j
Qiang Guo 1 , Gele Teri 1 , Weixing Mo 2 , Jianhang Huang 3 , Feng Liu 2 , Minghui Ye 4 , Dawei Fu 1
Affiliation  

Although one of the most promising grid-scale energy storage systems, aqueous zinc metal batteries are plagued by water corrosion, interfacial side reactions and dendrite growth, which result in the increase of local pH and byproduct formation on the zinc anode, thus deteriorating the coulombic efficiency (CE) and cycle life of zinc electrodes. Herein, we propose a modulation strategy by constructing a preferentially adsorbed layer on the Zn surface and altering the solvation structure of Zn2+ to ensure uniform ion transport through introducing a bifunctional electrolyte additive, butyrolactam (BA). As demonstrated using experimental results, DFT calculations, and theoretical simulations, sustained water consumption and dendrite growth issues are efficiently resolved and highly reversible Zn plating/stripping is achieved. By virtue of this bifunctional additive, the symmetric cells deliver long-term stability for 6200 h at 0.5 mA cm−2, 3900 h at 1 mA cm−2, 2000 h at 2 mA cm−2 and 800 h at 10 mA cm−2. Even at a high current density of 80 mA cm−2, the symmetric cells present stable cycling over 1000 cycles. Compared to the baseline electrolyte, the BA-based electrolyte shows excellent zinc stripping/plating performance with an improved coulombic efficiency. The assembled Zn–V2O5 and Zn–I2 full cells show enhanced rate capability and cycling stability. The proposed synergistic modulation concept in this work might provide a promising alternative for developing stable Zn anodes.

中文翻译:

Zn 表面上的优先吸附层可控制稳定的 Zn 金属阳极的离子分布

虽然水系锌金属电池是最有前途的电网规模储能系统之一,但它受到水腐蚀、界面副反应和枝晶生长的困扰,导致锌阳极局部pH值升高和副产物形成,从而恶化库仑性能。锌电极的效率(CE)和循环寿命。在此,我们提出了一种调制策略,通过在Zn表面构建优先吸附层并改变Zn 2+的溶剂化结构,以通过引入双功能电解质添加剂丁内酰胺(BA)来确保均匀的离子传输。正如实验结果、DFT 计算和理论模拟所证明的那样,持续的水消耗和枝晶生长问题得到了有效解决,并实现了高度可逆的镀/剥锌。凭借这种双功能添加剂,对称电池可在 0.5 mA cm -2下提供 6200 小时、1 mA cm -2下 3900 小时、2 mA cm -2下 2000 小时和 10 mA cm -2 下 800 小时的长期稳定性。 2 .即使在80 mA cm -2的高电流密度下,对称电池也呈现出超过1000次循环的稳定循环。与基准电解液相比,BA 基电解液表现出优异的剥锌/镀层性能以及更高的库仑效率。组装的Zn-V 2 O 5和Zn-I 2全电池表现出增强的倍率性能和循环稳定性。这项工作中提出的协同调制概念可能为开发稳定的锌阳极提供有前途的替代方案。
更新日期:2024-03-20
down
wechat
bug