当前位置: X-MOL 学术J. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry
Journal of Neuroscience ( IF 5.3 ) Pub Date : 2024-03-20


Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.



中文翻译:

大脑学习回路中依赖使用、未开发的双激酶信号传导

对大脑学习和记忆回路激酶信号传导进行成像是一项巨大的挑战。激酶 (SPARK) 生物传感器基于相的活性报告基因的分离允许对体内多种相互作用激酶进行电路局部研究,包括蛋白激酶 A (PKA) 和细胞外信号调节激酶 (ERK) 信号传导。在精确绘制的果蝇大脑学习/记忆回路中,我们发现 PKA 和 ERK 信号在不同的 Kenyon 细胞连接节点中差异丰富。我们发现,增强正常的环路活动会诱导环路定位的 PKA 和 ERK 信号传导,从而扩展新的突触前和突触后域内的激酶功能。活动诱导的 PKA 信号传导与先前选择性的 ERK 信号传导节点有广泛的重叠,而活动诱导的 ERK 信号传导则出现在新的连接节点中。我们发现 Kenyon 细胞中的靶向突触传递阻断可提高具有通常高基线 ERK 信号传导的 Kenyon 细胞中电路局部 ERK 诱导,表明横向和反馈抑制。我们发现连接Meng-Po(人SBK1)丝氨酸/苏氨酸激酶的通路的过度表达可以改善学习获取和记忆巩固,从而导致可分离的Kenyon细胞电路连接节点中的PKA和ERK信号传导显着增强,从而揭示了同步和未开发的信号传导潜力。最后,我们发现机械诱导的癫痫发作模型(容易电击的“爆炸敏感”突变体)具有强烈升高的电路局部 PKA 和 ERK 信号传导。除仅半合子男性癫痫模型外,所有实验均使用两种性别。过度兴奋、学习增强和癫痫发作模型的相互作用激酶信号传导相对较高,这表明依赖使用的诱导存在共同基础。我们得出的结论是,PKA 和 ERK 信号调节在与学习/记忆潜力相关的癫痫易感性基础上的使用依赖性空间回路动态中局部协调。

更新日期:2024-03-20
down
wechat
bug