当前位置: X-MOL 学术Energy Effic. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The potential of decentral heat pumps as flexibility option for decarbonised energy systems
Energy Efficiency ( IF 3.1 ) Pub Date : 2024-03-20 , DOI: 10.1007/s12053-024-10206-z
Franziska Schöniger , Philipp Mascherbauer , Gustav Resch , Lukas Kranzl , Reinhard Haas

Decarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO2 emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWhel and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.



中文翻译:

分散式热泵作为脱碳能源系统灵活选择的潜力

能源系统脱碳需要高比例的可变可再生能源发电和电力与热力等部门耦合。除了供热之外,热泵还可用于未来的能源系统,通过利用建筑物和缓冲罐的蓄热潜力,将电力需求转移到高可再生电力生产的时间上,从而为电力系统提供灵活性。为了弥合两种方法之间的差距,我们将详细的建筑技术操作模型和开源能源系统模型 Balmorel 结合起来,以评估分散式热泵可为电力系统提供的灵活性潜力。到 2030 年,奥地利将成为 100% 可再生能源电力系统的典范(按年度国家平衡计算)。结果表明,热泵灵活性带来的系统效益相对有限,且集中于短期灵活性。灵活的热泵可降低所有情况下的系统成本、CO 2排放以及光伏和风电弃电。在评估的标准灵活性情景中转移的电量为 194 GWh el,约占可用灵活热泵电力需求的 20%。不同建模方法的比较和关键输入参数的确定性敏感性分析补充了建模。影响热泵灵活性的最重要的输入参数是灵活容量(由装机容量和控制份额决定)、转换时间限制以及所提供灵活性的成本假设。热泵灵活性对于增加低残余负荷(在评估情景中高达 22%)比降低残余负荷峰值贡献更大。由于热需求和风力发电之间存在时间相关性,风电并网比光伏发电更能从热泵灵活性中受益。

更新日期:2024-03-20
down
wechat
bug