当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DFT insights into the adsorption mechanisms of lithium polysulfides on Ni2P (0001) surface for lithium–sulfur batteries
Applied Surface Science ( IF 6.7 ) Pub Date : 2024-03-14 , DOI: 10.1016/j.apsusc.2024.159847
Ricardo Amaral , Nelson Y. Dzade

Reliable and sustainable energy storage systems are crucial for a renewable energy future. The ultrahigh theoretical specific capacity and energy density of lithium–sulfur batteries (LSBs) make them one of the most promising next-generation battery technologies. However, their large-scale applications are seriously limited by rapid capacity fading and poor Coulombic efficiency owing to the shuttling of lithium polysulfides (LiPSs). Herein, we investigate nickel phosphide (NiP) as an effective host material to realize high-performance LSBs based on first-principles density functional theory (DFT) calculations. Our calculated adsorption energies of the LiPSs species reveal that the NiP(0001) surface possesses moderate to high adsorption strength and the adsorption process is facilitated via charge transfer from the LiPSs to the interacting NiP(0001) surface atoms. Due to the strong interactions between NiP(0001) and LiPSs (LiS, x = 1, 2, 4, 6 and 8), we observe elongation of the intramolecular Li–S bonds in LiPSs upon their adsorption. The stronger adsorption of LiS coupled with its spontaneous dissociation suggests a faster charging process could occur on the on NiP(0001) surface. These results demonstrate that NiP can provide effective anchoring sites for the soluble LiPSs, potentially having implications for the design of electrodes for practical LSBs.

中文翻译:

DFT 揭示锂硫电池 Ni2P (0001) 表面多硫化锂的吸附机制

可靠且可持续的储能系统对于可再生能源的未来至关重要。锂硫电池(LSB)的超高理论比容量和能量密度使其成为最有前途的下一代电池技术之一。然而,由于多硫化锂(LiPS)的穿梭,其容量快速衰减和库仑效率差,严重限制了它们的大规模应用。在此,我们研究磷化镍(NiP)作为一种有效的主体材料,以基于第一原理密度泛函理论(DFT)计算来实现高性能LSB。我们计算的 LiPS 物质的吸附能表明 NiP(0001) 表面具有中等到高的吸附强度,并且通过从 LiPS 到相互作用的 NiP(0001) 表面原子的电荷转移促进了吸附过程。由于 NiP(0001) 和 LiPSs (LiS, x = 1, 2, 4, 6 和 8) 之间的强相互作用,我们观察到 LiPSs 中分子内 Li-S 键在吸附后伸长。 LiS 更强的吸附及其自发解离表明 NiP(0001) 表面可能会发生更快的充电过程。这些结果表明 NiP 可以为可溶性 LiPS 提供有效的锚定位点,这可能对实际 LSB 的电极设计产生影响。
更新日期:2024-03-14
down
wechat
bug