当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cost and thermodynamic analysis of wind-hydrogen production via multi-energy systems
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2024-03-15 , DOI: 10.1016/j.enconman.2024.118286
Dongsheng Cai , Caroline Acen , Yihua Hu , Michael Adedeji , Mustafa Dagbasi , Iain Staffell , Olusola Bamisile

With rising temperatures, extreme weather events, and environmental challenges, there is a strong push towards decarbonization and an emphasis on renewable energy, with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization, with the potential to produce hydrogen as one of the output streams, creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings, transport, and industries. This paper explores the integration of wind energy and hydrogen production, particularly in areas where clean energy solutions are crucial, such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity, space cooling, hot water, and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine, a hydrogen-producing electrolyzer, and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production, a solid oxide fuel cell for continuous electricity production, an absorption cooling system for refrigeration, and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver, and analyzed based on energy and exergy efficiencies, and on economic metrics like levelized cost of electricity (LCOE), cooling (LCOC), refrigeration (LCOR), and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multi-objective method, with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively, while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh, LCOC = 0.004722 $/kWh, and LCOH = 0.03328 $/kWh. For System 2, these values are 0.03653 $/kWh, 0.003743 $/kWh, and 0.03328 $/kWh. In the case of System 3, they are 0.03736 $/kWh, 0.004726 $/kWh, and 0.03335 $/kWh, and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems, powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition, especially in rural communities.

中文翻译:

通过多能源系统风氢生产的成本和热力学分析

随着气温上升、极端天气事件和环境挑战,人们大力推动脱碳并重视可再生能源,其中风能成为关键参与者。多能源系统的概念提供了一种创新的脱碳方法,有可能生产氢气作为输出流之一,为清洁能源生产开辟了另一条途径。氢在建筑、交通和工业等多个领域的脱碳方面具有巨大潜力。本文探讨了风能和氢气生产的整合,特别是在清洁能源解决方案至关重要的地区,例如非洲的贫困村庄。它对三个系统进行建模:使用热力学和成本方法发电、空间冷却、热水和氢气的微型多能源系统的不同配置。系统 1 结合了风力涡轮机、制氢电解槽以及用于冷却和热水的热泵。系统 2 将其与生物质燃烧的再热再生动力循环相结合,以平衡风力发电的间歇性。系统3包括氢气生产、用于连续发电的固体氧化物燃料电池、用于制冷的吸收式冷却系统以及用于生产热水的热交换器。这些系统使用工程方程求解器进行建模,并根据能源和火用效率以及稳定状态下的平准化电力成本 (LCOE)、冷却 (LCOC)、制冷 (LCOR) 和氢气 (LCOH) 等经济指标进行分析状况。提出了各种参数的敏感性分析来评估性能的变化。使用多目标方法对系统进行优化,以最大化火用效率并最小化用作目标函数的总产品单位成本。结果表明,系统1实现了79.78%的能源效率和53.94%的火用效率。系统2的效率分别为55.26%和27.05%,而系统3的效率分别为78.73%和58.51%。微型多能源系统 1 的平准化成本为 LCOE = 0.04993 美元/kWh,LCOC = 0.004722 美元/kWh,LCOH = 0.03328 美元/kWh。对于系统 2,这些值为 0.03653 美元/kWh、0.003743 美元/kWh 和 0.03328 美元/kWh。在系统3的情况下,它们是0.03736 $/kWh、0.004726 $/kWh和0.03335 $/kWh,并且LCOR = 0.03309 $/kWh。结果表明,此处建模的系统与由其他可再生能源供电的现有多能源系统相比,具有具有竞争力的性能。整合这些系统将进一步促进可持续和净零能源系统转型,特别是在农村社区。
更新日期:2024-03-15
down
wechat
bug