当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical assembly of peptoids on MoS2
Materials Today Physics ( IF 11.5 ) Pub Date : 2024-03-16 , DOI: 10.1016/j.mtphys.2024.101406
Shuai Zhang , Wenhao Zhou , Bradley Harris , Renyu Zheng , Madison Monahan , Peng Mu , Wenchao Yang , Jiajun Chen , Aleksandr Noy , Marcel Baer , Chun-Long Chen , Jim De Yoreo

Bio-macromolecular assembly forms intricate scaffolds in living systems that allow them to biomineralize bone, enamel, and shell. Such bioinspired approaches have also been widely used in biohybrid materials synthesis. Recently, researchers have demonstrated functional bioelectronic structures by assembling biopolymers, including proteins and peptides, on van der Waals (VdW) materials for sensors and energy storage and harvesting. However, the hierarchical assembly of biopolymers on VdW materials has yet to be fully documented, because modulating the assembly architectures by controlling the energy landscape along with environmental stimuli, in which various assembly phases occur, remains challenging. In this study, we focused on peptoids, biomimetic polymers with properties similar to peptides but offering advantages such as greater side chain diversity, lower complexity due to elimination of backbone-backbone hydrogen binding, lower synthesis costs, and improved stability. Specifically, we designed two short peptoid sequences capable of assembling on MoS. Our findings reveal diverse self-assembled phases, including monolayer hybrid films with high crystallinity, vesicle-like nanoparticles, lamellae, and multi-layer ribbons. We elucidated the assembly processes of these states and confirmed the occurrence of phase transitions between them by using in situ atomic force microscopy (AFM). The results highlight the critical roles of peptoid-peptoid, peptoid-solvent, and peptoid-MoS interactions. These insights significantly advance the understanding needed to design hierarchical biopolymer architectures at VdW material-solvent interfaces with potential implications for enhancing the performance of bioelectronic devices based on 2D vdW materials.

中文翻译:

MoS2 上类肽的分层组装

生物大分子组装在生命系统中形成复杂的支架,使它们能够对骨骼、牙釉质和外壳进行生物矿化。这种仿生方法也已广泛应用于生物杂化材料的合成。最近,研究人员通过在范德华(VdW)材料上组装生物聚合物(包括蛋白质和肽)来展示功能性生物电子结构,用于传感器以及能量存储和收集。然而,生物聚合物在 VdW 材料上的分层组装尚未得到完整记录,因为通过控制能量景观和环境刺激(其中发生各种组装阶段)来调节组装架构仍然具有挑战性。在这项研究中,我们重点研究类肽,即具有与肽相似的特性的仿生聚合物,但具有更大的侧链多样性、由于消除主链-主链氢键而降低复杂性、更低的合成成本和更高的稳定性等优点。具体来说,我们设计了两个能够在MoS上组装的短类肽序列。我们的研究结果揭示了多种自组装相,包括具有高结晶度的单层杂化膜、囊泡状纳米颗粒、片层和多层带。我们阐明了这些状态的组装过程,并通过使用原位原子力显微镜(AFM)证实了它们之间相变的发生。结果强调了类肽-类肽、类肽-溶剂和类肽-MoS相互作用的关键作用。这些见解极大地推进了在 VdW 材料-溶剂界面设计分层生物聚合物结构所需的理解,对增强基于 2D vdW 材料的生物电子器件的性能具有潜在影响。
更新日期:2024-03-16
down
wechat
bug