当前位置: X-MOL 学术Environ. Pollut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective and ultrafast oxidation of multiple pollutants by biomorphic diatomite-based catalyst and stable catalytic Fenton-like membrane: Degradation behavior and mechanism analysis
Environmental Pollution ( IF 8.9 ) Pub Date : 2024-03-19 , DOI: 10.1016/j.envpol.2024.123825
Kexin Yin , Wei Hong , Jingren Yang , Yanwei Li , Yue Gao , Qian Li , Xing Xu

Carbon-driven advanced oxidations show great potential in water purification, but regulating structures and properties of carbon-based catalysts to achieve ultrafast Fenton-like reactions remains challenging. Herein, a biomorphic diatomite-based catalyst (BD-C) with Si–O doping was prepared using natural diatomite as silicon source and porous template. The results showed that the metal-free BD-C catalyst exhibited ultrafast oxidation performances (0.95–2.58 min) towards a variety of pollutants in PMS-based Fenton-like reaction, with the Fenton-like activity of metal-free catalyst comparable to metal-based catalysts or even single-atom catalysts. Pollutants (e.g., CP, BPA, TC, and PCM) with electron-donating groups exhibited extremely low PMS decomposition with overwhelmed electron transfer process (ETP), while high PMS consumption was induced by the addition of electron-withdrawing pollutants (e.g., MNZ and ATZ), which was dominated by radical oxidation. The BD-C/PMS system also showed a high ability to resist the environmental interference. In-depth theoretical investigations demonstrated that the coordination of Si–O can lower the potential barrier of PMS activation for accelerating the generation of radicals, and also promote the electron transfer from pollutants to the BD-C/PMS complexes. In addition, BD-C was deposited onto a polytetrafluoroethylene membrane (PTFEM) with 100% of pollutants removal over 10 h, thereby revealing the promising prospects of utilizing BD-C for practical applications.

中文翻译:

生物形态硅藻土基催化剂和稳定催化类芬顿膜选择性超快氧化多种污染物:降解行为和机理分析

碳驱动的高级氧化在水净化方面显示出巨大的潜力,但调节碳基催化剂的结构和性能以实现超快的类芬顿反应仍然具有挑战性。本文以天然硅藻土为硅源和多孔模板制备了 Si-O 掺杂的生物形态硅藻土基催化剂(BD-C)。结果表明,无金属BD-C催化剂在基于PMS的类芬顿反应中对多种污染物表现出超快氧化性能(0.95–2.58 min),无金属催化剂的类芬顿活性与金属相当。基于催化剂甚至单原子催化剂。具有给电子基团的污染物(例如,CP、BPA、TC和PCM)表现出极低的PMS分解,电子转移过程(ETP)不堪重负,而吸电子污染物(例如,MNZ)的添加引起了高PMS消耗和ATZ),其中以自由基氧化为主。 BD-C/PMS系统还表现出较高的抗环境干扰能力。深入的理论研究表明,Si-O的配位可以降低PMS活化的势垒,加速自由基的产生,并促进电子从污染物转移到BD-C/PMS复合物。此外,BD-C沉积在聚四氟乙烯膜(PTFEM)上,10小时内污染物去除率达到100%,从而揭示了BD-C在实际应用中的广阔前景。
更新日期:2024-03-19
down
wechat
bug