当前位置: X-MOL 学术Vacuum › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrasonic elliptical vibration micro-cutting mechanism of CoCrFeNiAlX short fiber reinforced aluminum-based composite
Vacuum ( IF 4 ) Pub Date : 2024-03-19 , DOI: 10.1016/j.vacuum.2024.113155
Ping Zhang , Shunxiang Wang , Yajie Sun , Jinlong Zhang , Xiujie Yue

This study explores the precision micro-machining of CoCrFeNiAlX short fiber-reinforced 7A09 aluminum matrix composites, focusing on the interplay between machining parameters and composite properties. The investigation scrutinizes the influence of vibrational amplitude, oscillation frequency, penetration depth, fiber orientation, and aluminum concentration on machining dynamics. Findings reveal that enhancing the X-axis vibrational amplitude to 80 μm is associated with a decrease in machining force, which then rises after reaching a threshold. In contrast, maintaining the Y-axis amplitude below 90 μm significantly increases the machining force. Higher amplitudes and frequencies were observed to reduce machining forces by up to 57% at an ultrasonic frequency of 15 kHz. Employing ultrasonically assisted vibration cutting (UEVC) culminated in a substantial 72% decrease in machining forces when fibers were optimally oriented at 45°. The study also identifies a direct correlation between the cutting temperature and both the vibrational amplitude and penetration depth, with the Y-axis amplitude having a more significant impact, causing a 55% variation in temperature. An increase in frequency initially lowers the cutting temperature, with the lowest temperature of 92 °C achieved at 5 kHz, while the peak temperature occurs at a machining depth of 60 μm. Temperature profiles indicate an initial rise with increased fiber orientation, followed by a decline. A slight increase in aluminum concentration marginally raises the cutting temperature. Furthermore, UEVC is found to produce a parabolic residual stress distribution, where amplitude and penetration depth determine the peak stress levels, and higher frequencies contribute to stress reduction. Fiber orientation also affects residual stress, with proper alignment reducing compressive stress and misalignment increasing it. The lowest point of residual compressive stress is detected in the Al0.6 fiber composite, while the peak is observed in the Al1 composites.

中文翻译:

CoCrFeNiAlX短纤维增强铝基复合材料超声椭圆振动微切削机理

本研究探索了 CoCrFeNiAlX 短纤维增强 7A09 铝基复合材料的精密微加工,重点关注加工参数与复合材料性能之间的相互作用。该研究仔细研究了振动幅度、振动频率、穿透深度、纤维取向和铝浓度对加工动力学的影响。研究结果表明,将 X 轴振动幅度提高到 80 μm 与加工力降低相关,加工力在达到阈值后又上升。相反,将 Y 轴振幅保持在 90 μm 以下会显着增加加工力。据观察,在 15 kHz 超声波频率下,较高的振幅和频率可将加工力降低高达 57%。当纤维以 45° 最佳取向时,采用超声波辅助振动切割 (UEVC) 可使加工力大幅降低 72%。该研究还确定了切削温度与振动幅度和穿透深度之间的直接相关性,其中 Y 轴幅度的影响更为显着,导致温度变化 55%。频率的增加最初会降低切削温度,在 5 kHz 时达到最低温度 92 °C,而峰值温度出现在加工深度 60 μm 时。温度分布表明,随着纤维取向的增加,温度最初上升,随后下降。铝浓度的轻微增加会略微提高切削温度。此外,我们发现 UEVC 会产生抛物线残余应力分布,其中振幅和穿透深度决定峰值应力水平,而较高的频率有助于减少应力。纤维取向也会影响残余应力,正确的排列会减少压应力,而错位则会增加压应力。在 Al0.6 纤维复合材料中检测到残余压应力的最低点,而在 Al1 复合材料中观察到峰值。
更新日期:2024-03-19
down
wechat
bug