当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ growing Ni2P on CdS@g-C3N4 composites for highly efficient synergistically photocatalytic H2 evolution and antibiotic degradation
Surfaces and Interfaces ( IF 6.2 ) Pub Date : 2024-03-16 , DOI: 10.1016/j.surfin.2024.104205
Qiang Zhang , Tengfei Wu , Huinan Che , Chunmei Tang , Bin Liu , Yanhui Ao

Achieving simultaneous photocatalytic H evolution and antibiotic degradation is ideal but challenging. Herein, IS-NiP/CdS/CN ternary composites was elaborately constructed by electrostatic self-assembly followed by in-situ growth of NiP method. The IS-NiP/CdS/CN exhibit extremely high H yield and achieve synergistic degradation of multiple antibiotic contaminants (323 μmol for H yield and 72 % for tetracycline hydrochloride synergistic degradation). Interestingly, for the synergistic mechanism, it is found that antibiotic molecules can serve as electron donors to promote the separation of carriers, thus remarkably improving H yield. More notably, the electron-donating capacity of antibiotic molecules dictates the synergistic efficiency, that is, the stronger the electron-donating capacity of antibiotic molecules, the more favorable it is for enhancing synergistic efficiency. Besides, experimental and DFT calculation demonstrate that the exceptional photocatalytic activity of IS-NiP/CdS/CN is ascribed to the combined effect of the induced internal electric field, and the improved interfacial contact by the in-situ grown NiP cocatalyst, thus substantially accelerating carriers transport. Our work provides an idea for simultaneous photocatalytic H evolution and pollutants degradation.

中文翻译:

CdS@g-C3N4 复合材料上原位生长 Ni2P 可实现高效协同光催化析氢和抗生素降解

同时实现光催化析氢和抗生素降解是理想但具有挑战性的。在此,通过静电自组装和NiP原位生长方法精心构建了IS-NiP/CdS/CN三元复合材料。 IS-NiP/CdS/CN表现出极高的H产率,并实现了多种抗生素污染物的协同降解(H产率323 μmol,盐酸四环素协同降解72%)。有趣的是,对于协同机制,发现抗生素分子可以作为电子供体促进载流子分离,从而显着提高H产率。更值得注意的是,抗生素分子的给电子能力决定了协同效率,即抗生素分子的给电子能力越强,越有利于增强协同效率。此外,实验和DFT计算表明IS-NiP/CdS/CN优异的光催化活性归因于感应内电场的综合作用以及原位生长的NiP助催化剂改善的界面接触,从而大大加速承运人运输。我们的工作为同步光催化析氢和污染物降解提供了思路。
更新日期:2024-03-16
down
wechat
bug