当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ZnO–ZrO2 coupling nitrogen-doped carbon nanotube bifunctional catalyst for co-production of diesel fuel and low carbon alcohol from syngas
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2024-03-20 , DOI: 10.1016/j.ijhydene.2024.03.193
Huijie Zao , Jing Liu , Beibei Yan , Jingang Yao , Saisai Liu , Guanyi Chen

Catalytic syngas conversion to liquid fuel is pivotal for biomass utilization, enhancing energy security, reducing carbon emissions and curbing reliance on petroleum imports. Herein, bifunctional catalysts comprising zinc-zirconium dioxide (ZnZrO) dispersed on nitrogen-doped multi-walled carbon nanotubes (NCNT) (ZnZrO/NCNT) were successfully designed, enabling the simultaneous production of both diesel fuels (C–C hydrocarbon) and methanol through direct syngas conversion. Operating at 450 °C, 4.5 MPa, a gas hourly space velocity (GHSV) of 4800 mL h·g, the ZnZrO/NCNT catalyst, featuring 2.6% nitrogen doping, exhibited exceptional performance, achieving a 50.3% selectivity for C–C hydrocarbons and a 26.4% selectivity for methanol, while maintaining a 52.5% single-pass CO conversion rate. The C selectivity significantly surpasses the bottleneck predicted by the ASF distribution theory (C selectivity <36%). This starkly contrasts that of ZnO/NCNT (1.7% C–C and 6.3% methanol) and ZrO/NCNT (32.5% C–C and 25.4% methanol) catalysts. Moreover, the ZnZrO/NCNT catalyst still retained C 51.5% selectivity and 25% methanol selectivity after 100 h of continuous operation. The synergistic effects resulting from the amalgamation of highly active nanostructured units with a well-encapsulation structure efficiently hinder active component migration during catalysis. This significantly enhances both the catalyst's activity and stability. Furthermore, nitrogen introduction serves as a key electron donor to ZnZrO, thereby catalyzing the activation of CO dissociation. This activation step emerges as a pivotal factor crucial for enhancing selectivity in liquid fuel production.

中文翻译:

ZnO-ZrO2偶联氮掺杂碳纳米管双功能催化剂用于合成气联产柴油和低碳醇

催化合成气转化为液体燃料对于生物质利用、增强能源安全、减少碳排放和遏制对石油进口的依赖至关重要。在此,成功设计了包含分散在氮掺杂多壁碳纳米管(NCNT)上的锌二氧化锆(ZnZrO)(ZnZrO/NCNT)的双功能催化剂,能够同时生产柴油燃料(C-C烃)和甲醇通过直接合成气转化。 2.6%氮掺杂的ZnZrO/NCNT催化剂在450℃、4.5MPa、气时空速(GHSV)为4800mL·h·g的条件下表现出优异的性能,对C-C烃类的选择性达到50.3%甲醇选择性为 26.4%,同时保持 52.5% 单程 CO 转化率。 C选择性显着超过ASF分布理论预测的瓶颈(C选择性<36%)。这与 ZnO/NCNT(1.7% C-C 和 6.3% 甲醇)和 ZrO/NCNT(32.5% C-C 和 25.4% 甲醇)催化剂形成鲜明对比。此外,连续运行100小时后,ZnZrO/NCNT催化剂仍保持51.5%的C选择性和25%的甲醇选择性。高活性纳米结构单元与良好封装结构的融合产生的协同效应有效地阻碍了催化过程中活性组分的迁移。这显着提高了催化剂的活性和稳定性。此外,氮的引入充当ZnZrO的关键电子供体,从而催化CO解离的激活。该活化步骤成为提高液体燃料生产选择性的关键因素。
更新日期:2024-03-20
down
wechat
bug