当前位置: X-MOL 学术Earth Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of the Empirical Scaling Factor of Joule Heating Rates in TIE-GCM With EISCAT Measurements
Earth and Space Science ( IF 3.1 ) Pub Date : 2024-03-27 , DOI: 10.1029/2023ea003447
Florian Günzkofer 1 , Huixin Liu 2 , Gunter Stober 3 , Dimitry Pokhotelov 4 , Claudia Borries 1
Affiliation  

Joule heating is one of the main energy inputs into the thermosphere-ionosphere system. Precise modeling of this process is essential for any space weather application. Existing thermosphere-ionosphere models tend to underestimate the actual Joule heating rate quite significantly. The Thermosphere-Ionosphere-Electrodynamics General-Circulation-Model applies an empirical scaling factor of 1.5 for compensation. We calculate vertical profiles of Joule heating rates from approximately 2,220 hr of measurements with the EISCAT incoherent scatter radar and the corresponding model runs. We investigate model runs with the plasma convection driven by both the Heelis and the Weimer model. The required scaling of the Joule heating profiles is determined with respect to the Kp index, the Kan-Lee merging electric field EKL, and the magnetic local time. Though the default scaling factor of 1.5 appears to be adequate on average, we find that the required scaling varies strongly with all three parameters ranging from 0.46 to ∼20 at geomagnetically disturbed and quiet times, respectively. Furthermore, the required scaling is significantly different in runs driven by the Heelis and Weimer model. Adjusting the scaling factor with respect to the Kp index, EKL, the magnetic local time, and the choice of convection model would reduce the difference between Joule heating rates calculated from measurement and model plasma parameters.

中文翻译:

使用 EISCAT 测量评估 TIE-GCM 中焦耳加热速率的经验比例因子

焦耳热是热层-电离层系统的主要能量输入之一。该过程的精确建模对于任何空间天气应用都至关重要。现有的热层-电离层模型往往会大大低估实际的焦耳加热速率。热层-电离层-电动环流模型应用 1.5 的经验比例因子进行补偿。我们使用 EISCAT 非相干散射雷达进行约 2,220 小时的测量,计算焦耳加热速率的垂直分布,并运行相应的模型。我们研究了由HeelisWeimer模型驱动的等离子体对流模型的运行情况。焦耳加热曲线所需的缩放根据Kp指数、Kan-Lee 合并电场E KL和磁本地时间确定。虽然平均而言,默认缩放因子 1.5 似乎足够了,但我们发现,在地磁干扰和安静时间,所需的缩放比例随着所有三个参数的变化很大,范围分别为 0.46 到 ∼20。此外,在HeelisWeimer模型驱动的运行中,所需的缩放比例显着不同。调整有关Kp指数、E KL、磁本地时间和对流模型选择的比例因子将减少根据测量和模型等离子体参数计算的焦耳加热速率之间的差异。
更新日期:2024-03-28
down
wechat
bug