当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient photoelectrocatalytic reduction of CO2 to formate via Bi-doped InOCl nanosheets
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2024-03-20 , DOI: 10.1016/j.jallcom.2024.174220
Yibo Jia , Huimin Yang , Rui Chen , Yi Zhang , Fanfan Gao , Cheng Nan , Jiaqi Yang , Xuemei Gao

Converting CO into useful substances is an important approach to address the challenge of reducing CO emissions and combating climate change. Compared with the traditional process, photoelectrocatalytic CO reduction has great potential to solve the problem of CO emission. In this work, Bi-doped InOCl cathode catalysts were prepared by a two-step calcination process, and they demonstrated efficient catalytic activity for the reduction of CO to formate. The inclusion of bismuth (Bi) in InOCl resulted in improved catalytic performance compared to the native InOCl catalyst. Specifically, the highest formate selectivity can be observed at −0.9 V vs RHE with a Faraday efficiency of 89.9% and the product rate of 101.41 μmol hcm when the Bi doping amount is 5%, representing approximately 2 and 3 times the values obtained with native InOCl, respectively. The experimental results indicate that Bi doping promotes the formation of {001} crystalline surfaces in InOCl, while increasing the specific surface area and the availability of more active sites for CO reduction. This work holds significant potential for further advancements in the field of photoelectrocatalytic reduction of CO.

中文翻译:

通过 Bi 掺杂 InOCl 纳米片高效光电催化还原 CO2 生成甲酸盐

将二氧化碳转化为有用物质是应对减少二氧化碳排放和应对气候变化挑战的重要途径。与传统工艺相比,光电催化CO还原在解决CO排放问题方面具有巨大潜力。在这项工作中,通过两步煅烧过程制备了 Bi 掺杂的 InOCl 阴极催化剂,它们表现出对 CO 还原为甲酸盐的高效催化活性。与天然 InOCl 催化剂相比,InOCl 中含有铋 (Bi) 可以提高催化性能。具体来说,当 Bi 掺杂量为 5% 时,在 -0.9 V vs RHE 时可以观察到最高的甲酸盐选择性,法拉第效率为 89.9%,产物率为 101.41 μmol hcm,约为天然产物值的 2 倍和 3 倍。分别为InOCl。实验结果表明,Bi掺杂促进了InOCl中{001}晶体表面的形成,同时增加了比表面积和更多CO还原活性位点的可用性。这项工作对于光电催化还原二氧化碳领域的进一步发展具有巨大的潜力。
更新日期:2024-03-20
down
wechat
bug