当前位置: X-MOL 学术J. Phys. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From wide to ultrawide-bandgap semiconductors for high power and high frequency electronic devices
Journal of Physics: Materials ( IF 5.847 ) Pub Date : 2024-03-08 , DOI: 10.1088/2515-7639/ad218b
Kelly Woo , Zhengliang Bian , Maliha Noshin , Rafael Perez Martinez , Mohamadali Malakoutian , Bhawani Shankar , Srabanti Chowdhury

Wide and ultrawide-bandgap (U/WBG) materials have garnered significant attention within the semiconductor device community due to their potential to enhance device performance through their substantial bandgap properties. These exceptional material characteristics can enable more robust and efficient devices, particularly in scenarios involving high power, high frequency, and extreme environmental conditions. Despite the promising outlook, the physics of UWBG materials remains inadequately understood, leading to a notable gap between theoretical predictions and experimental device behavior. To address this knowledge gap and pinpoint areas where further research can have the most significant impact, this review provides an overview of the progress and limitations in U/WBG materials. The review commences by discussing Gallium Nitride, a more mature WBG material that serves as a foundation for establishing fundamental concepts and addressing associated challenges. Subsequently, the focus shifts to the examination of various UWBG materials, including AlGaN/AlN, Diamond, and Ga2O3. For each of these materials, the review delves into their unique properties, growth methods, and current state-of-the-art devices, with a primary emphasis on their applications in power and radio-frequency electronics.

中文翻译:

用于高功率和高频电子设备的从宽带隙到超宽带隙半导体

宽带隙和超宽带隙 (U/WBG) 材料因其巨大的带隙特性而具有增强器件性能的潜力,因此在半导体器件领域引起了广泛关注。这些卓越的材料特性可以实现更坚固、更高效的设备,特别是在涉及高功率、高频和极端环境条件的场景中。尽管前景广阔,但对超宽带材料的物理学仍然知之甚少,导致理论预测与实验设备行为之间存在显着差距。为了解决这一知识差距并查明进一步研究可以产生最重大影响的领域,本综述概述了 U/WBG 材料的进展和局限性。审查首先讨论氮化镓,这是一种更成熟的宽带隙材料,可作为建立基本概念和解决相关挑战的基础。随后,重点转向各种 UWBG 材料的研究,包括 AlGaN/AlN、金刚石和 Ga 2 O 3。对于每种材料,该评论深入研究了它们独特的特性、生长方法和当前最先进的设备,主要重点是它们在电力和射频电子学中的应用。
更新日期:2024-03-08
down
wechat
bug