当前位置: X-MOL 学术Nano Futures › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Roadmap for unconventional computing with nanotechnology
Nano Futures ( IF 2.1 ) Pub Date : 2024-03-28 , DOI: 10.1088/2399-1984/ad299a
Giovanni Finocchio , Jean Anne C Incorvia , Joseph S Friedman , Qu Yang , Anna Giordano , Julie Grollier , Hyunsoo Yang , Florin Ciubotaru , Andrii V Chumak , Azad J Naeemi , Sorin D Cotofana , Riccardo Tomasello , Christos Panagopoulos , Mario Carpentieri , Peng Lin , Gang Pan , J Joshua Yang , Aida Todri-Sanial , Gabriele Boschetto , Kremena Makasheva , Vinod K Sangwan , Amit Ranjan Trivedi , Mark C Hersam , Kerem Y Camsari , Peter L McMahon , Supriyo Datta , Belita Koiller , Gabriel H Aguilar , Guilherme P Temporão , Davi R Rodrigues , Satoshi Sunada , Karin Everschor-Sitte , Kosuke Tatsumura , Hayato Goto , Vito Puliafito , Johan Åkerman , Hiroki Takesue , Massimiliano Di Ventra , Yuriy V Pershin , Saibal Mukhopadhyay , Kaushik Roy , I- Ting Wang , Wang Kang , Yao Zhu , Brajesh Kumar Kaushik , Jennifer Hasler , Samiran Ganguly , Avik W Ghosh , William Levy , Vwani Roychowdhury , Supriyo Bandyopadhyay

In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.

中文翻译:

利用纳米技术进行非常规计算的路线图

在“超越摩尔定律”时代,随着边缘智能的不断增强,采用非常规方法的特定领域计算将变得越来越普遍。与此同时,采用各种纳米技术将在能源成本、计算速度、减少占地面积、网络弹性和处理能力方面带来好处。利用纳米技术制定非常规计算路线图来指导未来研究的时机已经成熟,本系列旨在满足这一需求。作者为使用电子自旋、忆阻器件、二维纳米材料、纳米磁体和各种动力系统的神经形态计算提供了全面的路线图。它们还涉及其他范式,例如伊辛机、贝叶斯推理引擎、p 位概率计算、内存处理、量子存储器和算法、斯格明子和自旋波计算,以及用于增量学习和解决问题的脑启发计算。资源严重受限的环境。这些方法比基于冯诺依曼架构的传统布尔计算具有优势。随着人工智能计算需求的增长速度比电子器件摩尔定律的增长速度快 50 倍,更多非常规的计算和信号处理方法即将出现,该路线图将有助于识别未来的需求和挑战。在一个非常丰富的领域,该领域的专家旨在为非常规计算提供一些占主导地位和最有前途的技术,这些技术将在未来一段时间内出现。在整体方法中,目标是提供巩固该领域并指导未来有影响力的发现的途径。
更新日期:2024-03-28
down
wechat
bug