当前位置: X-MOL 学术Adv. Nonlinear Stud. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Michael-Simon type inequalities in hyperbolic space H n + 1 ${\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows
Advanced Nonlinear Studies ( IF 1.8 ) Pub Date : 2024-04-01 , DOI: 10.1515/ans-2023-0127
Jingshi Cui 1 , Peibiao Zhao 1
Affiliation  

In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space H n + 1 ${\mathbb{H}}^{n+1}$ based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as follows (0.1) M λ f 2 E 1 2 + | M f | 2 M ̄ f λ , ν + M f ω n 1 n M f n n 1 n 1 n $$\underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle +\underset{\partial M}{\int }f\ge {\omega }_{n}^{\frac{1}{n}}{\left(\underset{M}{\int }{f}^{\frac{n}{n-1}}\right)}^{\frac{n-1}{n}}$$ provided that M is h-convex and f is a positive smooth function, where λ′(r) = coshr. In particular, when f is of constant, (0.1) coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” Commun. Pure Appl. Math., vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in H n + 1 ${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as below (0.2) M λ f 2 E k 2 + | M f | 2 E k 1 2 M ̄ f λ , ν E k 1 + M f E k 1 p k q 1 1 ( W 1 ( Ω ) ) 1 n k + 1 M f n k + 1 n k E k 1 n k n k + 1 \begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align} provided that M is h-convex and Ω is the domain enclosed by M, p k (r) = ω n (λ′) k−1, W 1 ( Ω ) = 1 n | M | ${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $ , λ′(r) = coshr, q 1 ( r ) = W 1 S r n + 1 ${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ , the area for a geodesic sphere of radius r, and q 1 1 ${q}_{1}^{-1}$ is the inverse function of q 1. In particular, when f is of constant and k is odd, (0.2) is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” Math. Ann., vol. 382, nos. 3–4, pp. 1425–1474, 2022).
更新日期:2024-04-01
down
wechat
bug