当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Connecting Interfacial Mechanical Adhesion, Efficiency, and Operational Stability in High Performance Inverted Perovskite Solar Cells
ACS Energy Letters ( IF 22.0 ) Pub Date : 2024-04-02 , DOI: 10.1021/acsenergylett.4c00510
Zhenghong Dai 1 , Shuai You 2 , Dwaipayan Chakraborty 1 , Shunran Li 3, 4 , Yadong Zhang 5 , Anush Ranka 1 , Stephen Barlow 5 , Joseph J. Berry 5, 6, 7 , Seth R. Marder 5, 6, 8 , Peijun Guo 3, 4 , Yue Qi 1 , Kai Zhu 2 , Nitin P. Padture 1
Affiliation  

Carbazole-based self-assembled monolayers (SAMs) at the interface between the metal-halide perovskite (MHP) and the transparent conducting oxide (TCO) serve the function of hole-transport layers in p-i-n “inverted” perovskite solar cells (PSCs). Here we show that the use of an iodine-terminated carbazole-based SAM increases the interfacial mechanical adhesion dramatically (2.6-fold) and that this is responsible for substantial improvements in the interfacial morphology, photocarrier transport, and operational stability. While the improved morphology and optoelectronic properties impart high efficiency (up to 25.39%) to the PSCs, the enhanced adhesion suppresses nucleation and propagation of pores/cracks during PSC operation, resulting in the retention of 96% of the initial efficiency after 1000 h of continuous-illumination testing at the maximum power-point. This demonstrates the strong connection between judicious interfacial adhesion toughening and simultaneous enhancement in the efficiency and operational stability of p-i-n PSCs, with broader implications for the reliability and durability of perovskite photovoltaics before they can be commercialized.

中文翻译:

连接高性能倒置钙钛矿太阳能电池的界面机械粘合力、效率和运行稳定性

金属卤化物钙钛矿(MHP)和透明导电氧化物(TCO)之间界面上的基于咔唑的自组装单层(SAM)在pin “倒置”钙钛矿太阳能电池(PSC)中起到空穴传输层的作用。在这里,我们表明,使用碘封端咔唑基 SAM 显着提高了界面机械粘附力(2.6 倍),这导致界面形态、光载流子传输和操作稳定性的显着改善。虽然改进的形貌和光电特性赋予 PSC 高效率(高达 25.39%),但增强的粘附力抑制了 PSC 运行过程中孔/裂纹的成核和扩展,导致在 1000 小时后仍保留了 96% 的初始效率。最大功率点的连续照明测试。这证明了明智的界面粘附增韧与同时提高pin PSC的效率和运行稳定性之间的密切联系,对钙钛矿光伏发电商业化之前的可靠性和耐用性具有更广泛的影响。
更新日期:2024-04-02
down
wechat
bug