当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-high surface area ionic-liquid-derived carbons that meet both gravimetric and volumetric methane storage targets
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-04-03 , DOI: 10.1039/d3ee03957a
Nawaf Albeladi 1, 2 , L. Scott Blankenship 1 , Robert Mokaya 1
Affiliation  

The storage of methane, to enable vehicular use, may be achieved in porous solids, but to date, there is no material that meets the gravimetric and volumetric targets (for example those set by the US Department of Energy, DOE) for such use. Here, in an effort to address this challenge, we explore the use of carbonised N-rich crosslinkable imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium tricyanomethanide, ([BMIm][C(CN)3]), as a precursor for porous carbons. On carbonisation, the IL yields carbonaceous matter (IL-C) with the unusual combination of high N content and low O content (i.e., low O/C atomic ratio). Activation of the IL-derived carbonaceous matter (IL-C) with KOH generates activated carbons with a mix of microporosity and mesoporosity, ultra-high surface area of up to ∼4000 m2 g−1, pore volume of up to 3.3 cm3 g−1, and relatively high packing density. The enhanced porosity and comparatively high packing density of the activated carbons is a consequence of the elemental composition of the IL-C precursor. The presence of N, which acts as a porogen, favours generation of carbons with high mesoporosity and high surface area while a low O/C ratio acts in a reverse manner favouring the formation of microporous carbons with high packing density. The overall effect is that the carbons have porosity and packing density that is suited for optimising both the gravimetric and volumetric uptake of methane, which reaches 0.53 g g−1 and 289 cm3 (STP) cm−3, respectively, at 25 °C and 100 bar. The uptake, therefore, surpasses both the gravimetric and volumetric methane storage targets that would enable widespread use for vehicular transport. The IL-derived activated carbons are the first porous materials (carbon or MOF) to meet both gravimetric and volumetric methane storage targets for experimentally determined values.

中文翻译:

超高表面积离子液体衍生碳,满足重量和体积甲烷储存目标

为了便于车辆使用,可以在多孔固体中实现甲烷的储存,但迄今为止,还没有材料能够满足此类用途的重量和体积目标(例如美国能源部设定的目标)。在这里,为了应对这一挑战,我们探索使用碳化的富氮可交联咪唑基离子液体(IL),1-丁基-3-甲基咪唑鎓三氰基甲烷化物,([BMIm][C(CN) 3 ]) ,作为多孔碳的前体。在碳化时,IL产生具有高N含量和低O含量(低O/C原子比)的不寻常组合的碳质物质(IL-C)。用 KOH 活化 IL 衍生的碳质物质 (IL-C) 生成具有微孔和中孔混合的活性炭,超高表面积高达 ∼4000 m 2 g -1,孔体积高达 3.3 cm 3 g -1,并且堆积密度相对较高。活性炭的增强的孔隙率和相对较高的堆积密度是IL-C前体的元素组成的结果。 N的存在作为致孔剂,有利于生成具有高介孔率和高表面积的碳,而低O/C比则相反,有利于形成具有高堆积密度的微孔碳。总体效果是,碳的孔隙率和堆积密度适合优化甲烷的重量和体积吸收,在 25 °C 和 25 °C 下分别达到 0.53 gg -1和 289 cm 3 (STP) cm -3 。 100 巴。因此,其吸收量超过了甲烷的重量和体积储存目标,从而能够广泛用于车辆运输。 IL 衍生的活性炭是第一种满足实验确定值的重量和体积甲烷储存目标的多孔材料(碳或 MOF)。
更新日期:2024-04-08
down
wechat
bug