当前位置: X-MOL 学术Quantum › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices
Quantum ( IF 6.4 ) Pub Date : 2024-04-03 , DOI: 10.22331/q-2024-04-03-1305
Thibaut Lacroix 1, 2, 3 , Brendon W. Lovett 2 , Alex W. Chin 3
Affiliation  

Nanodevices exploiting quantum effects are critically important elements of future quantum technologies (QT), but their real-world performance is strongly limited by decoherence arising from local `environmental' interactions. Compounding this, as devices become more complex, i.e. contain multiple functional units, the `local' environments begin to overlap, creating the possibility of environmentally mediated decoherence phenomena on new time-and-length scales. Such complex and inherently non-Markovian dynamics could present a challenge for scaling up QT, but – on the other hand – the ability of environments to transfer `signals' and energy might also enable sophisticated spatiotemporal coordination of inter-component processes, as is suggested to happen in biological nanomachines, like enzymes and photosynthetic proteins. Exploiting numerically exact many body methods (tensor networks) we study a fully quantum model that allows us to explore how propagating environmental dynamics can instigate and direct the evolution of spatially remote, non-interacting quantum systems. We demonstrate how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states, and also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the `downstream' kinetics of a `functional' quantum system. With access to complete system-environment wave functions, we elucidate the microscopic processes underlying these phenomena, providing new insight into how they could be exploited for energy efficient quantum devices.

中文翻译:

从非马尔可夫耗散到量子纳米器件的时空控制

利用量子效应的纳米器件是未来量子技术(QT)至关重要的元素,但它们在现实世界中的性能受到局部“环境”相互作用产生的退相干的严重限制。更复杂的是,随着设备变得更加复杂,即包含多个功能单元,“局部”环境开始重叠,从而在新的时间和长度尺度上产生环境介导的退相干现象的可能性。这种复杂且本质上非马尔可夫的动态可能对扩大 QT 提出挑战,但另一方面,环境传输“信号”和能量的能力也可能实现组件间过程的复杂时空协调,正如所建议的那样发生在生物纳米机器中,例如酶和光合蛋白质。利用数值精确的多体方法(张量网络),我们研究了一个完全量子模型,该模型使我们能够探索传播环境动力学如何激发和指导空间遥远、非相互作用的量子系统的演化。我们演示了如何远程收集消散到环境中的能量以创建瞬态激发/反应状态,并确定系统激发触发的重组如何定性且可逆地改变“功能”量子系统的“下游”动力学。通过获得完整的系统环境波函数,我们阐明了这些现象背后的微观过程,为如何将它们用于节能量子设备提供了新的见解。
更新日期:2024-04-04
down
wechat
bug