当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2024-04-04 , DOI: 10.1039/d4ee00750f
Feipeng Zhao 1 , Shumin Zhang 1 , Shuo Wang 2 , Carmen M. Andrei 3 , Hui Yuan 3, 4 , Jigang Zhou 5 , Jian Wang 5 , Zengqing Zhuo 6 , Yu Zhong 7 , Han Su 7 , Jung Tae Kim 1 , Ruizhi Yu 1 , Yingjie Gao 1 , Jinghua Guo 6 , Tsun-Kong Sham 8 , Yifei Mo 2 , Xueliang Sun 1, 9
Affiliation  

All-solid-state lithium batteries (ASSLBs) are highly desirable for their sustainability, enhanced safety, and increased energy densities. The compatibility between cathodes and solid electrolytes (SEs) is critical for ASSLB electrochemical performance. While the conventional LiCoO2 (LCO) cathode shows structural stability, limitations in the energy density and materials cost prompt exploration of Ni-rich, Co-poor cathodes like lithium nickel cobalt manganese oxide (NCM). However, Ni-rich NCM faces challenges with typical solid electrolytes (e.g., sulfides or oxides), hindering high-energy-density ASSLBs. Our study reveals a unique cathode/electrolyte interface behavior with lithium tantalum oxychloride (LTOC) superionic conductors, favoring Co-less, Ni-rich NCM over LCO. The Ta/Co interaction is identified as a failure mechanism for LTOC/LCO, while a kinetically stabilized interface is achieved with lean-Co cathodes. Beyond the cathode material composition, our study also establishes a correlation between the temperature used for battery testing and both interface reactivity and cell performance. This research provides crucial insights into the innovative design of high-performance ASSLBs based on the promising LTOC oxychloride SEs.

中文翻译:

揭示采用氯氧化物固体电解质的全固态电池中前所未有的阴极界面行为

全固态锂电池 (ASSLB) 因其可持续性、增强的安全性和更高的能量密度而备受青睐。阴极和固体电解质(SE)之间的兼容性对于ASSLB电化学性能至关重要。虽然传统的LiCoO 2 (LCO)阴极显示出结构稳定性,但能量密度和材料成本的限制促使人们探索富镍、贫钴的阴极,例如锂镍钴锰氧化物(NCM)。然而,富镍NCM面临着典型固体电解质(例如硫化物或氧化物)的挑战,阻碍了高能量密度ASSLBs的发展。我们的研究揭示了氯氧化锂钽 (LTOC) 超离子导体的独特阴极/电解质界面行为,与 LCO 相比,有利于无 Co、富镍 NCM。 Ta/Co 相互作用被认为是 LTOC/LCO 的失效机制,而贫钴阴极则实现了动力学稳定的界面。除了正极材料成分之外,我们的研究还建立了电池测试温度与界面反应性和电池性能之间的相关性。这项研究为基于有前途的 LTOC 氯氧化物 SE 的高性能 ASSLB 的创新设计提供了重要的见解。
更新日期:2024-04-04
down
wechat
bug