当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating multiple regulatory strategies: phase, morphology and interface engineering to construct a hierarchical Ni2P–MoS2/rGO heterostructure catalyst for efficient oxygen reduction reaction
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2024-04-04 , DOI: 10.1039/d4qi00262h
Xinyi Wang 1 , Jing Jin 1 , Zeyuan Gao 1 , Li Hou 1 , Xiwen Tao 1 , Jing Wang 1 , Yueqi Zhao 1 , Faming Gao 1, 2
Affiliation  

Two-dimensional (2D) molybdenum disulfide (MoS2) with a large surface area and unique electronic properties has emerged as a promising noble metal-free catalyst for electrochemical energy storage/conversion applications. However, the high reaction energy barrier and sluggish oxygen reduction reaction (ORR) kinetics severely limit its application in the field of fuel cells. Herein, a hierarchical Ni2P–MoS2/rGO hybrid catalyst with Ni2P nanoparticles uniformly supported on 2D layer 1T-MoS2/rGO composite nanosheets was elaborately designed via multiple regulatory strategies. The high-content metallic phase of MoS2 (1T-MoS2) nanosheets (78%) vertically anchored on the reduced graphene oxide (rGO) substrate, which is conducive to increasing the exposed active edges of MoS2 and accelerating the electron transport. Meanwhile, the interface electron coupling effect between Ni2P and MoS2 effectively generates numerous catalytically active centers via optimizing the electronic structure. Benefiting from the prominent synergistic effect of the phase, morphology, and interface engineering, the as-obtained Ni2P–MoS2/rGO hybrid demonstrates remarkable ORR catalytic activity and stability with a higher onset and half-wave potential of 0.916 V and 0.764 V, respectively, which are superior to those of the most reported MoS2-based catalysts. The modification of Ni2P on the 1T-MoS2/rGO composite triggers a transformation of the reaction pathway from two-electron for 1T-MoS2/rGO to direct four-electron, suggesting rapid reaction kinetics. The density functional theory (DFT) results further disclose that the rearrangement of the d band can be rationalized via the charge reconfiguration in the vicinity of the interfaces between Ni2P and MoS2, thereby greatly reducing the energy barrier of the ORR and enhancing the catalytic kinetics.

中文翻译:

集成多种调控策略:相、形貌和界面工程,构建多级Ni2P-MoS2/rGO异质结构催化剂,用于高效的氧还原反应

二维(2D)二硫化钼(MoS 2)具有大表面积和独特的电子特性,已成为一种有前景的无贵金属催化剂,用于电化学能量存储/转换应用。然而,高反应能垒和缓慢的氧还原反应(ORR)动力学严重限制了其在燃料电池领域的应用。在此,通过多种调控策略精心设计了一种分层Ni 2 P–MoS 2 /rGO杂化催化剂,其Ni 2 P纳米粒子均匀负载在2D层1T-MoS 2 /rGO复合纳米片上。高含量MoS 2 (1T-MoS 2 )纳米片金属相(78%)垂直锚定在还原氧化石墨烯(rGO)基底上,有利于增加MoS 2暴露的活性边缘并加速电子传输。同时,Ni 2 P和MoS 2之间的界面电子耦合效应通过优化电子结构有效地产生了众多的催化活性中心。受益于相、形貌和界面工程的显着协同效应,所获得的Ni 2 P-MoS 2 /rGO杂化物表现出显着的ORR催化活性和稳定性,具有较高的起始电位和半波电位,分别为0.916 V和0.764 V 分别优于大多数报道的 MoS 2基催化剂。1T-MoS 2 /rGO 复合材料上 Ni 2 P的修饰引发了反应途径从 1T-MoS 2 /rGO 的两电子到直接四电子的转变,表明反应动力学快速。密度泛函理论(DFT)结果进一步揭示了d带的重排可以通过Ni 2 P和MoS 2界面附近的电荷重构来合理化,从而大大降低ORR的能垒并提高催化动力学。
更新日期:2024-04-04
down
wechat
bug