当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Construction of the Fe2O3/BiVO4 Heterostructure-Based Photoanode for Photo-Electrochemical Desalination
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2024-04-06 , DOI: 10.1021/acssuschemeng.4c00430
Shengbo Yuan 1 , Wenming Ding 1 , Jianrong Li 1 , Xing Wang 2 , Yinggui Zhang 1 , Ying Zhao 1 , Fuming Chen 2 , Xiaoman Li 1 , Min Luo 1
Affiliation  

Solar-assisted electrochemical desalination is a novel technique for sustainable development. In this study, a high energy efficiency photodriven electrochemical desalination method was proposed. The entire desalination process is driven by the Fe2O3/BiVO4 photoanode. The Fe2O3/BiVO4 material has a uniform distribution with the original coral-like morphology, which enhances its light energy utilization and reduces the photocorrosion of BiVO4. In the current photoelectrochemical desalination device, at a saltwater concentration of 1350 ppm, an initial photocurrent of 1.92 mA/cm2 and a salt removal rate of 44.62 μg/(cm2·min) were achieved with a zero-bias voltage applied in Fe2O3/BiVO4 compared with 20.40 μg/(cm2·min) in pure BiVO4. Also, at the saltwater concentration of 3500 ppm, the salt removal rate of Fe2O3/BiVO4 reached 65.29 μg/(cm2·min). The solar desalination capacities of the obtained photoanodes were 0.127 μmol/J at 1350 ppm and 0.133 μmol/J at 3500 ppm. Further research was conducted on the photoanode–electrolyte interface and charge separation and transportation using electron paramagnetic resonance and Mott–Schottky analysis. The exceptional desalination performance can be credited to the type II heterostructure effect of the Fe2O3/BiVO4 photoanode, which is applied in solar-driven desalination. This study has a significant importance in the design of high energy efficiency heterojunction photocatalysts for saltwater desalination.

中文翻译:

用于光电化学海水淡化的 Fe2O3/BiVO4 异质结构光阳极的设计与构建

太阳能辅助电化学海水淡化是一种可持续发展的新技术。在这项研究中,提出了一种高能效光驱动电化学海水淡化方法。整个海水淡化过程由Fe 2 O 3 /BiVO 4光阳极驱动。 Fe 2 O 3 /BiVO 4材料分布均匀,具有原有的珊瑚状形貌,提高了其光能利用率,降低了BiVO 4的光腐蚀。目前的光电化学海水淡化装置中,在盐水浓度为1350 ppm时,在Fe中施加零偏压时,初始光电流为1.92 mA / cm 2,除盐率为44.62 μg/(cm 2 ·min)。 2 O 3 /BiVO 4与纯BiVO 4中的20.40 μg/(cm 2 ·min)相比。另外,在盐水浓度为3500ppm时,Fe 2 O 3 /BiVO 4的除盐率达到65.29μg/(cm 2 ·min)。所得光阳极的太阳能脱盐能力在1350 ppm时为0.127 μmol/J,在3500 ppm时为0.133 μmol/J。利用电子顺磁共振和莫特-肖特基分析对光阳极-电解质界面以及电荷分离和传输进行了进一步的研究。优异的海水淡化性能可归功于Fe 2 O 3 /BiVO 4光阳极的II型异质结构效应,该光阳极应用于太阳能驱动海水淡化。这项研究对于海水淡化高能效异质结光催化剂的设计具有重要意义。
更新日期:2024-04-06
down
wechat
bug