当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real‐Time Measurements of Photonic Microchips with Femtometer‐Scale Spectral Precision and Ultrahigh Sensitivity
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2024-04-08 , DOI: 10.1002/lpor.202301396
Mahdi Mozdoor Dashtabi 1 , Mohammad Talebi Khoshmehr 1 , Hamed Nikbakht 1 , Bruno Lopez Rodriguez 2 , Naresh Sharma 2 , Iman Esmaeil Zadeh 2 , B. Imran Akca 1
Affiliation  

Photonic integrated circuits (PICs) are enabling breakthroughs in several areas, including quantum computing, neuromorphic processors, wearable devices, and more. Nevertheless, existing PIC measurement methods lack the spectral precision, speed, and sensitivity required for refining current applications and exploring new frontiers such as point‐of‐care or wearable biosensors. Here, the “sweeping optical frequency mixing method (SOHO)” is presented, surpassing traditional PIC measurement methods with real‐time operation, 30 dB higher sensitivity, and over 100 times better spectral resolution. Leveraging the frequency mixing process with a sweeping laser, SOHO excels in simplicity, eliminating the need for advanced optical components and additional calibration procedures. Its superior performance is demonstrated on ultrahigh‐quality factor (Q) fiber‐loop resonators (Q = 46 × 106), as well as microresonators, realized on a new optical waveguide platform. An experimental spectral resolution of 19.1 femtometers is demonstrated using an 85‐meter‐long unbalanced fiber Mach Zehnder Interferometer, constrained by noise resulting from the extended fiber length, while the theoretical resolution is calculated to be 6.2 femtometers, limited by the linewidth of the reference laser. With its excellent performance metrics, SOHO has the potential to become a vital measurement tool in photonics, excelling in high‐speed and high‐resolution measurements of weak optical signals.

中文翻译:

具有飞米级光谱精度和超高灵敏度的光子微芯片的实时测量

光子集成电路 (PIC) 正在多个领域实现突破,包括量子计算、神经形态处理器、可穿戴设备等。然而,现有的 PIC 测量方法缺乏改进当前应用和探索护理点或可穿戴生物传感器等新领域所需的光谱精度、速度和灵敏度。这里提出了“扫频光混频方法(SOHO)”,超越了传统的PIC测量方法,具有实时操作、灵敏度提高30 dB以及光谱分辨率提高100倍以上的优点。 SOHO 利用扫频激光的混频过程,在简单性方面表现出色,无需先进的光学元件和额外的校准程序。其卓越的性能体现在超高品质因数上()光纤环谐振器(= 46 × 106)以及微谐振器,在新的光波导平台上实现。使用 85 米长的不平衡光纤马赫曾德干涉仪演示了 19.1 飞米的实验光谱分辨率,受到光纤长度延长产生的噪声的限制,而理论分辨率经计算为 6.2 飞米,受到参考线宽的限制激光。凭借其出色的性能指标,SOHO 有潜力成为光子学领域的重要测量工具,在微弱光信号的高速和高分辨率测量方面表现出色。
更新日期:2024-04-08
down
wechat
bug