当前位置: X-MOL 学术J. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-stage stabilization and high-strength nano-porous Si@C for simple fabrication of lithium-ion batteries
Journal of Materials Science ( IF 4.5 ) Pub Date : 2024-04-09 , DOI: 10.1007/s10853-024-09561-0
Xue Li , Chenxi Liu , Anding Xu , Songping Wu , Liming Wang

Silicon serves as a widely employed anode material in lithium-ion batteries (LIBs). However, its practical application faces significant challenges due to substantial volume expansion during lithiation and inadequate electrical conductivity, limiting its use in high-energy–density LIBs. In addressing these challenges, this study places a strong emphasis on developing a mass-producible method for fabricating high-strength nano-porous Si@C composites. This material shows great promise as an anode material for lithium-ion batteries, offering multi-stage stability. The research focuses on modifying commercial silicon powders, followed by a straightforward and large-scale multi-stage stabilization synthesis process, ultimately leading to the successful synthesis of robust nano-porous Si@C composites. Notably, these nano-porous Si@C composites demonstrate outstanding electrochemical performance, with a high discharging capacity of 3001.5 mAh g–1 at 0.2 A g–1 and 1407.9 mAh g–1 after 1000 cycles at 2 A g–1. They exhibit an impressive rate capability of 856.4 mAh g–1 at 10 A g–1, exhibiting an initial Coulombic efficiency of 82.5%. Overall, this systematic approach offers a promising advancement in developing high-performance Si-based anode materials for next-generation LIBs, with improved energy density and cycling stability.



中文翻译:

用于简单制造锂离子电池的多级稳定和高强度纳米多孔Si@C

硅是锂离子电池(LIB)中广泛使用的阳极材料。然而,由于锂化过程中体积大幅膨胀和电导率不足,其实际应用面临重大挑战,限制了其在高能量密度锂离子电池中的应用。为了应对这些挑战,本研究重点开发一种可大规模生产的方法来制造高强度纳米多孔 Si@C 复合材料。这种材料作为锂离子电池的负极材料显示出巨大的前景,具有多级稳定性。该研究的重点是对商业硅粉进行改性,然后进行简单且大规模的多阶段稳定合成过程,最终成功合成坚固的纳米多孔Si@C复合材料。值得注意的是,这些纳米多孔Si@C复合材料表现出出色的电化学性能,在0.2 A g –1下放电容量为3001.5 mAh g –1 ,在2 A g –1下循环1000次后放电容量为1407.9 mAh g –1。它们在 10 A g –1下表现出令人印象深刻的倍率能力 856.4 mAh g –1,初始库仑效率为 82.5%。总体而言,这种系统方法在开发下一代锂离子电池的高性能硅基阳极材料方面取得了有希望的进展,并提高了能量密度和循环稳定性。

更新日期:2024-04-09
down
wechat
bug