当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selenium alloyed tellurium oxide for amorphous p-channel transistors
Nature ( IF 64.8 ) Pub Date : 2024-04-10 , DOI: 10.1038/s41586-024-07360-w
Ao Liu , Yong-Sung Kim , Min Gyu Kim , Youjin Reo , Taoyu Zou , Taesu Choi , Sai Bai , Huihui Zhu , Yong-Young Noh

Compared to polycrystalline semiconductors, amorphous semiconductors offer inherent cost-effective, simplicity, and uniform manufacturing. Traditional amorphous hydrogenated Si falls short in electrical properties, necessitating the exploration of new materials. The creation of high-mobility amorphous n-type metal oxides, such as a-InGaZnO1, and their integration into thin-film transistors (TFTs) have propelled advancements in modern large-area electronics and new-generation displays2–8. However, finding comparable p-type counterparts poses significant challenges, impeding the progress of complementary metal-oxide-semiconductor (CMOS) technology and integrated circuits9–11. Here, we introduce a pioneering design strategy for amorphous p-type semiconductors, incorporating high-mobility tellurium within an amorphous tellurium sub-oxide matrix, and demonstrate its utility in high-performance, stable p-channel TFTs, and complementary circuits. Theoretical analysis unveils a delocalised valence band from tellurium 5p bands with shallow acceptor states, enabling excess hole doping and transport. Selenium alloying suppresses hole concentrations and facilitates the p orbital connectivity, realising high-performance p-channel TFTs with an average field-effect hole mobility of ~15 cm2 V−1 s−1 and on/off current ratios of 106 ~ 107, along with wafer-scale uniformity and long-term stabilities under bias stress and ambient aging. This study represents a crucial stride towards establishing commercially viable amorphous p-channel TFT technology and complementary electronics in a low-cost and industry-compatible manner.



中文翻译:

用于非晶 p 沟道晶体管的硒合金碲氧化物

与多晶半导体相比,非晶半导体具有固有的成本效益、简单性和统一的制造能力。传统的非晶氢化硅在电性能方面存在不足,因此需要探索新材料。高迁移率非晶 n 型金属氧化物(例如 a-InGaZnO 1 )的创建及其与薄膜晶体管 (TFT) 的集成推动了现代大面积电子和新一代显示器的进步2-8。然而,寻找可比的 p 型对应物提出了重大挑战,阻碍了互补金属氧化物半导体 (CMOS) 技术和集成电路的进步9-11。在这里,我们介绍了非晶 p 型半导体的开创性设计策略,将高迁移率碲纳入非晶碲低氧化物基体中,并展示了其在高性能、稳定的 p 沟道 TFT 和互补电路中的实用性。理论分析揭示了具有浅受主态的碲 5 p能带的离域价带,从而实现了过量的空穴掺杂和传输。硒合金化抑制空穴浓度并促进p轨道连接,实现平均场效应空穴迁移率~15 cm 2 V −1 s −1和开/关电流比10 6  ~ 10的高性能p沟道TFT如图7所示,以及在偏置应力和环境老化下的晶圆级均匀性和长期稳定性。这项研究代表了以低成本和行业兼容的方式建立商业上可行的非晶 p 沟道 TFT 技术和互补电子器件的关键一步。

更新日期:2024-04-10
down
wechat
bug