当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting both electronic and ionic conductivities via incorporation of molybdenum for LiFe0.5Mn0.5PO4 cathode in lithium-ion batteries
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2024-04-03 , DOI: 10.1016/j.jallcom.2024.174396
Donguk Kim , Sunwoo Lee , Wonchang Choi

As the EV and ESS markets expand, there is a growing interest in LiFeMnPO (LFMP) cathode materials amidst the increasing demand for LIBs. The LFMP cathode material is cost-effective and structurally stable; however, it has the drawback of low conductivity. Therefore, the development of an LFMP cathode material with high ionic/electronic conductivity is essential for high-stability and high-C-rate LIB applications. We propose a carbon-coated LFMP cathode material with Mo placed at the Fe and Mn sites. The samples were synthesized using a solvothermal method. Mo contributes to enhanced Li-ion diffusion and charge transfer rates. The XRD Rietveld refinement results showed elongated Li–O bonds within the Mo-doped LFMP/C, which accelerated the Li ion diffusion. Through SEM, TEM–EDS mapping, and XPS analysis we have confirmed the properties and morphology of the material. The electrochemical evaluation of the material was conducted using galvanostatic charge-discharge, CV, and EIS methods. Based on these tests, Mo incorporation not only increased the capacity but also enhanced the rate performance, reduced the voltage polarization, and improved the lithium-ion diffusion coefficient. Based on the 3.7 V additional plateau, which is attributed to the sluggish kinetics of Mn, Mo played a role in enhancing the kinetic behavior of Mn. Low-temperature performance tests demonstrated that the Mo-doped samples exhibited high energy density, cycle retention, and superior ionic conductivity. In summary, an appropriate amount of Mo doping is effective for improving the electrochemical performance of LFMP, making it a promising cathode material.

中文翻译:

通过在锂离子电池的 LiFe0.5Mn0.5PO4 阴极中加入钼来提高电子和离子电导率

随着电动汽车和储能系统市场的扩大,随着锂离子电池需求的不断增加,人们对 LiFeMnPO (LFMP) 正极材料的兴趣也越来越大。 LFMP正极材料性价比高、结构稳定;然而,它具有电导率低的缺点。因此,开发具有高离子/电子电导率的LFMP正极材料对于高稳定性和高倍率LIB应用至关重要。我们提出了一种碳涂层 LFMP 阴极材料,其中 Mo 位于 Fe 和 Mn 位点。使用溶剂热法合成样品。 Mo 有助于提高锂离子扩散和电荷转移速率。 XRD Rietveld 精修结果显示,Mo 掺杂 LFMP/C 中的 Li-O 键被拉长,这加速了 Li 离子的扩散。通过 SEM、TEM-EDS 测绘和 XPS 分析,我们确认了材料的性能和形貌。使用恒电流充放电、CV 和 EIS 方法对材料进行电化学评估。根据这些测试,Mo的掺入不仅增加了容量,而且增强了倍率性能,减少了电压极化,并提高了锂离子扩散系数。基于 3.7 V 的额外平台(归因于 Mn 的缓慢动力学),Mo 在增强 Mn 的动力学行为方面发挥了作用。低温性能测试表明,Mo掺杂样品表现出高能量密度、循环保持率和优异的离子电导率。综上所述,适量的Mo掺杂可有效提高LFMP的电化学性能,使其成为一种有前景的正极材料。
更新日期:2024-04-03
down
wechat
bug