当前位置: X-MOL 学术Carbon Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures
Carbon Energy ( IF 20.5 ) Pub Date : 2024-04-12 , DOI: 10.1002/cey2.531
Lingli Liu 1, 2 , Siqi Li 1, 2 , Lei Hu 1, 2 , Xin Liang 1, 2 , Wei Yang 1 , Xulai Yang 2, 3 , Kunhong Hu 1 , Chaofeng Hou 4 , Yongsheng Han 4 , Shulei Chou 5
Affiliation  

The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na+-ether-solvent cointercalation process. The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+ diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na3V2(PO4)3//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol−1) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.

中文翻译:

Bi@C纳米球阳极具有Na+-醚-溶剂共插行为,可在极低温下实现快速钠存储

低离子传输是低温(LT)钠离子电池(SIB)的主要障碍。在此,利用新型Bi基配合物(1,4,5,8-萘四甲酸二酐作为配体)作为前体,构建了碳包覆的铋(Bi)纳米球(Bi@C)的核壳结构,这为制造Bi基阳极提供了有效的模板。在-40°C下,Bi@C负极实现了高容量,相当于25°C下的96%,这得益于核壳纳米结构工程和Na + -醚-溶剂共插过程。特殊的Na + -二甘醇二甲醚共插行为可以有效降低活化能并加速Na +扩散动力学,从而使Bi@C电极具有优异的低温性能。正如预期的那样,所制造的Na 3 V 2 (PO 4 ) 3 //Bi@C全电池在-40°C下在醚基电解质中提供了令人印象深刻的可充电性。密度泛函理论计算和电化学测试也揭示了LT下的快速反应动力学机制,这得益于与Bi@C阳极相比,Bi@C阳极具有更低的扩散能垒(167 meV)和更低的反应活化能(32.2 kJ mol -1 )散装Bi。这项工作为极端条件下可充电 SIB 提供了合理的 Bi 基电极设计。
更新日期:2024-04-13
down
wechat
bug