当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative Evaluation of Graphite Anode Structuring for Lithium‐Ion Batteries Using Laser Ablation and Mechanical Embossing
Energy Technology ( IF 3.8 ) Pub Date : 2024-04-13 , DOI: 10.1002/ente.202301502
Lucas Hille 1 , Josef Keilhofer 1 , Roman Mazur 1 , Ruediger Daub 1 , Michael F. Zaeh 1
Affiliation  

Lithium‐ion batteries inherently suffer from a target conflict between a high energy density and a high power density. The creation of microscopic holes in the electrodes alleviates the trade‐off by facilitating lithium‐ion diffusion. This study presents a novel concept for electrode structuring called structure calendering, combining mechanical embossing (MEC) and calendering. It is compared to the widely investigated laser ablation (LAS) process by structuring graphite anodes and examining their geometrical, mechanical, and electrochemical properties. It is shown that structure calendering results in wider and deeper holes of higher reproducibility than laser structuring. As a consequence of the different hole‐creation mechanisms, laser structuring induces a surface elevation around the holes while clogged pores are observed in the lateral walls of mechanically structured holes. In pull‐off tests, no pronounced impact of electrode structuring on the mechanical electrode properties is discerned. Structuring of electrodes using both methods yields significantly reduced electrode tortuosities and enhanced discharge rate performances. From a production engineering perspective, structure calendering has advantages over laser structuring in terms of material loss, processing rate, and investment costs, while the latter offers higher flexibility, precision, and presumably lower maintenance efforts. In conclusion, structure calendering represents an attractive process alternative to laser structuring.

中文翻译:

使用激光烧蚀和机械压花对锂离子电池石墨阳极结构进行比较评估

锂离子电池本质上存在高能量密度和高功率密度之间的目标冲突。电极中微孔的产生通过促进锂离子扩散来减轻这种权衡。这项研究提出了一种称为结构压延的电极结构新概念,结合了机械压花(MEC)和压延。通过构造石墨阳极并检查其几何、机械和电化学性能,将其与广泛研究的激光烧蚀 (LAS) 工艺进行比较。结果表明,与激光结构化相比,结构压延可产生更宽、更深的孔,且具有更高的可重复性。由于不同的孔形成机制,激光结构化会导致孔周围的表面升高,同时在机械结构化孔的侧壁中观察到堵塞的孔。在拉拔测试中,没有发现电极结构对机械电极性能的明显影响。使用这两种方法构建电极可以显着减少电极弯曲并提高放电速率性能。从生产工程的角度来看,结构压延在材料损耗、加工速率和投资成本方面比激光结构化具有优势,而后者提供了更高的灵活性、精度,并且可能会降低维护工作量。总之,结构压延代表了激光结构化的一种有吸引力的替代工艺。
更新日期:2024-04-13
down
wechat
bug