当前位置: X-MOL 学术Appl. Phys. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room temperature ZnO nanorods based TFT ammonia sensor: an experimental and simulation study
Applied Physics A ( IF 2.7 ) Pub Date : 2024-04-13 , DOI: 10.1007/s00339-024-07474-y
Binay Binod Kumar , Basanta Bhowmik , Abhinav Pratap Singh , Satyabrata Jit , Kunal Singh

This study presents a method for growing and characterizing isolated and coalesced ZnO nanorods on a SiO2/p-Si substrate using the chemical bath deposition (CBD) technique. Characterizations of the nanorods were investigated using an X-ray diffractometer (XRD), atomic force microscopy (AFM), photoluminescence spectrofluorometer, and I–V parameter analyzer. The growth of ZnO nanorods significantly impacts the coalesced surface morphology and quantitative structural parameters. Potentiality of the ZnO nanorods based thin film transistor (TFT) as NH3 gas sensor has been explored. Experimental findings of the fabricated device structure were found to be well in agreement with the similar prototype structure simulated in TCAD environment. Maximum drain currents deviation between simulation and experimental study were found to be negligibly ± 0.2%. The ZnO nanorods-based TFT exhibits excellent room temperature sensitivity of ~ 226% at 50 ppm NH3 with threshold voltage shift towards lower VGS (from 9 V in air to 6 V in 50 ppm NH3). The fast response (14 s) and recovery (4 s) characteristics of the TFT sensor proved to be potentiality towards ammonia leakage detection and making it highly useful for industrial safety applications. The room temperature nanorods ammonia sensing mechanism were correlated through band bending at the grain boundaries interfaces following neck-controlled depletion model.



中文翻译:

室温 ZnO 纳米棒基 TFT 氨传感器:实验和模拟研究

本研究提出了一种使用化学浴沉积 (CBD) 技术在SiO 2 /p-Si基底上生长和表征分离和聚结ZnO纳米棒的方法。使用 X 射线衍射仪 (XRD)、原子力显微镜 (AFM)、光致发光分光荧光计和 I-V 参数分析仪研究了纳米棒的表征。ZnO纳米棒的生长显着影响聚结表面形态和定量结构参数。基于ZnO纳米棒的薄膜晶体管(TFT)作为NH 3气体传感器的潜力已经被探索。所制造器件结构的实验结果与 TCAD 环境中模拟的类似原型结构非常吻合。仿真和实验研究之间的最大漏极电流偏差为±0.2%,可以忽略不计。基于ZnO纳米棒的TFT在 50 ppm NH 3条件下表现出约 226% 的优异室温灵敏度,并且阈值电压向较低V GS移动(从空气中的 9 V 到 50 ppm NH 3中的 6 V ) TFT 传感器的快速响应(14 秒)和恢复(4 秒)特性被证明具有氨泄漏检测的潜力,并使其在工业安全应用中非常有用。室温纳米棒氨传感机制通过遵循颈控耗尽模型的晶界界面处的能带弯曲进行关联。

更新日期:2024-04-14
down
wechat
bug