当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An unblocked Li transport pathway for all-solid-state batteries enabled by boosting bulk diffusion kinetic and interfacial ion conduction
Energy Storage Materials ( IF 20.4 ) Pub Date : 2024-04-09 , DOI: 10.1016/j.ensm.2024.103401
Anran Cheng , Sheng Wang , Ruxing Wang , Haomiao Li , Wei Wang , Min Zhou , Kangli Wang , Kai Jiang

The high interfacial resistance and dendrite growth associated with the high Li concentration gradient at the Li/solid-state electrolytes (SSEs) interface significantly hinder the cycle life of solid-state lithium metal batteries (SSLMBs). This limitation is primarily attributed to the slow diffusion of Li atoms in the bulk and the sluggish conduction of Li ions at the interface. Merely focusing on enhancing either aspect is typically not sufficient to fully address this challenge. Herein, we utilize AgNO molten salt to in-situ generate LiAg anode and nitrided interphase to simultaneously boost the bulk Li atom diffusion kinetics and the interfacial ion conduction, effectively constructing a fast-continuous ion/atom transport pathway and significantly reducing the concentration gradient of Li. The in-situ formed LiAg alloy, with a Li diffusion coefficient of approximately 10 cm s, demonstrates a diffusion rate three orders of magnitude higher than bulk Li (∼ 10 cm s), alleviating vacancy accumulation and contact loss at the anode/SSE interface. While the in-situ formed ionic conductive nitrided interphase promotes ion transport through the interface to reduce the Li concentration gradient and boost charge transfer kinetics. Benefiting from the high Li ion/atom transport rate in both bulk and interface, ultrahigh critical current density/areal capacity (1.2 mA cm;1.2 mAh cm) and cyclability (1.0 mA cm;0.5 mAh cm) are achieved for solid-state Li||Li symmetric cells. Impressively, an SSLMB assembled with a LiFePO electrode shows excellent cycling stability for as long as 1600 cycles at 0.5 C with a high capacity retention of 82.6 %.

中文翻译:

通过增强体扩散动力学和界面离子传导,实现全固态电池畅通的锂传输途径

与Li/固态电解质(SSE)界面处的高Li浓度梯度相关的高界面电阻和枝晶生长显着阻碍了固态锂金属电池(SSLMB)的循环寿命。这种限制主要归因于锂原子在本体中的缓慢扩散以及锂离子在界面处的缓慢传导。仅仅专注于增强任一方面通常不足以完全应对这一挑战。在此,我们利用AgNO熔盐原位生成LiAg阳极和氮化界面,同时增强体相Li原子扩散动力学和界面离子传导,有效构建快速连续的离子/原子传输路径,并显着降低LiAg阳极和氮化界面的浓度梯度。李。原位形成的LiAg合金的Li扩散系数约为10 cm s,其扩散速率比块状Li(约10 cm s)高三个数量级,从而减轻了阳极/SSE界面的空位积累和接触损耗。而原位形成的离子导电氮化界面促进离子通过界面传输,从而降低Li浓度梯度并增强电荷转移动力学。受益于体积和界面的高锂离子/原子传输速率,固态锂实现了超高临界电流密度/面积容量(1.2 mA cm;1.2 mAh cm)和循环性能(1.0 mA cm;0.5 mAh cm) ||Li对称电池。令人印象深刻的是,与 LiFePO 电极组装的 SSLMB 在 0.5 C 下表现出长达 1600 次循环的优异循环稳定性,容量保持率高达 82.6%。
更新日期:2024-04-09
down
wechat
bug