当前位置: X-MOL 学术Chin. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-field simulations of the effect of temperature and interface for zirconium δ-hydrides
Chinese Physics B ( IF 1.7 ) Pub Date : 2024-04-01 , DOI: 10.1088/1674-1056/ad1f4d
Zi-Hang Cheny , Jie Shengy , Yu Liu , Xiao-Ming Shi , Houbing Huang , Ke Xu , Yue-Chao Wang , Shuai Wu , Bo Sun , Hai-Feng Liu , Hai-Feng Song

Hydride precipitation in zirconium cladding materials can damage their integrity and durability. Service temperature and material defects have a significant effect on the dynamic growth of hydrides. In this study, we have developed a phase-field model based on the assumption of elastic behaviour within a specific temperature range (613 K–653 K). This model allows us to study the influence of temperature and interfacial effects on the morphology, stress, and average growth rate of zirconium hydride. The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology. The ultimate determinant of hydride orientation is the loss of interfacial coherency, primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q. An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical, accompanied by the onset of redirection behaviour. Interestingly, redirection occurs at a critical mismatch level, denoted as q c, and remains unaffected by variations in temperature and interfacial energy. However, this redirection leads to an increase in the maximum stress, which may influence the direction of hydride crack propagation. This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.

中文翻译:

温度和界面对 δ-氢化锆影响的相场模拟

锆包覆材料中的氢化物沉淀会损害其完整性和耐用性。使用温度和材料缺陷对氢化物的动态生长有显着影响。在本研究中,我们基于特定温度范围 (613 K–653 K) 内的弹性行为假设开发了一个相场模型。该模型使我们能够研究温度和界面效应对氢化锆的形态、应力和平均生长速率的影响。结果表明,温度和界面能的变化影响氢化物形态的长厚比和平均生长速率。氢化物取向的最终决定因素是界面相干性的丧失,这主要是由界面位错缺陷引起的,并且可以通过失配程度来量化q。界面相干性损失的升级导致氢化物生长从水平向垂直转变,并伴随着重定向行为的开始。有趣的是,重定向发生在严重的不匹配级别,表示为q c,并且不受温度和界面能变化的影响。然而,这种重定向导致最大应力增加,这可能会影响氢化物裂纹扩展的方向。这项研究强调了界面相干性的重要性,并为锆合金中氢化物的形态和生长动力学提供了有价值的见解。
更新日期:2024-04-01
down
wechat
bug