当前位置: X-MOL 学术J. Aircr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Airfoil Design Framework for Optimized Boundary-Layer Integral Parameters
Journal of Aircraft ( IF 2.2 ) Pub Date : 2024-04-17 , DOI: 10.2514/1.c037713
Armando R. Collazo Garcia 1 , Phillip J. Ansell 2
Affiliation  

An airfoil design framework is introduced in which boundary-layer integral parameters serve as the driving design mechanism. The method consists of generating a parameterized pressure distribution capable of producing the desired boundary-layer characteristics for inverse design use. Additionally, by deduction from the Squire–Young theory, the method allows for the determination of the pressure distribution that results in the minimum theoretical drag. To assess this design framework, several airfoils were developed based on the mission requirements of the RQ-4B Global Hawk aircraft. Numerical results obtained using a viscous-inviscid solver of the integral boundary layer and Euler equations showed that the optimized airfoils achieved profile drag reductions of 9.06 and 6.00%, respectively, for α=0° and L/Dmax design points. A validation experimental campaign was also performed using the optimized CA5427-72 airfoil. The acquired data produced the expected pressure distribution characteristics and aerodynamic performance improvements, typifying the efficacy of the design framework.



中文翻译:

优化边界层积分参数的翼型设计框架

介绍了一种翼型设计框架,其中边界层积分参数作为驱动设计机制。该方法包括生成参数化压力分布,该压力分布能够产生用于逆设计的所需边界层特性。此外,通过从 Squire-Young 理论推导,该方法可以确定导致最小理论阻力的压力分布。为了评估这一设计框架,根据 RQ-4B 全球鹰飞机的任务要求开发了几种翼型。使用积分边界层粘性-非粘性求解器和欧拉方程获得的数值结果表明,优化后的翼型分别实现了 9.06 和 6.00% 的轮廓阻力减少α=0°L/D最大限度设计要点。还使用优化的 CA5427-72 翼型进行了验证实验活动。获取的数据产生了预期的压力分布特性和空气动力学性能改进,代表了设计框架的功效。

更新日期:2024-04-18
down
wechat
bug