当前位置: X-MOL 学术Quantum Inf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin-encoded quantum computer near ultimate physical limits
Quantum Information Processing ( IF 2.5 ) Pub Date : 2024-04-17 , DOI: 10.1007/s11128-024-04358-1
Frank Z. Wang

Landauer’s bound is applicable to irreversible quantum operations. In this study, we showcased that the Doppler temperature manifests the existence of Landauer’s bound, which does not block a spin from (irreversibly) flipping with a tiny amount of energy via quantum tunneling. Verified by a spin–spin magnetic interaction experiment, this (energy) amount was determined to be only 1.25 times the theoretical value of Landauer’s bound. Based on Heisenberg’s principle, we defined information from a measuring perspective: one bit of information corresponds to the smallest error when quantifying the product of the measured energy uncertainty (\(\Delta E\)) and the measured time duration (\(\Delta t\)). We then illustrate an optically manipulated, spin-encoded, near-Landauer-bound, near-Heisenberg-limit quantum computer that encompasses this new definition of information. This study may represent the last piece of the puzzle in understanding both quantum Landauer erasure and Heisenberg’s quantum limit since a single spin is the smallest information carrier.



中文翻译:

自旋编码量子计算机接近极限物理极限

兰道尔界限适用于不可逆量子运算。在这项研究中,我们展示了多普勒温度表明了兰道尔束缚的存在,该束缚不会阻止自旋通过量子隧道以微量能量(不可逆地)翻转。通过自旋-自旋磁相互作用实验验证,这个(能量)量被确定仅为兰道尔束缚理论值的1.25倍。基于海森堡原理,我们从测量的角度定义了信息:一位信息对应于量化测量的能量不确定度(\(\Delta E\))和测量的持续时间(\(\Delta )的乘积时的最小误差。 t\))。然后,我们展示了一种光学操纵、自旋编码、近兰道尔束缚、近海森堡极限的量子计算机,它包含了这种新的信息定义。这项研究可能代表了理解量子兰道尔擦除和海森堡量子极限的最后一块拼图,因为单个自旋是最小的信息载体。

更新日期:2024-04-18
down
wechat
bug