当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Filling-enforced obstructed atomic insulators
Physical Review B ( IF 3.7 ) Pub Date : 2024-04-19 , DOI: 10.1103/physrevb.109.165139
Yuanfeng Xu , Luis Elcoro , Zhi-Da Song , M. G. Vergniory , Claudia Felser , Stuart S. P. Parkin , Nicolas Regnault , Juan L. Mañes , B. Andrei Bernevig

Topological band theory has achieved great success in the high-throughput search for topological band structures both in paramagnetic and magnetic crystal materials. However, a significant proportion of materials are topologically trivial insulators at the Fermi level. In this paper, we show that, remarkably, for a subset of the topologically trivial insulators, knowing only their electron number and the Wyckoff positions of the atoms we can separate them into two groups: the obstructed atomic insulator (OAI) and the atomic insulator (AI). The interesting group, the OAI, have a center of charge not localized on the atoms. Using the theory of topological quantum chemistry, in this work we first derive the necessary and sufficient conditions for a topologically trivial insulator to be a filling enforced obstructed atomic insulator (feOAI) in the 1651 Shubnikov space groups. Remarkably, the filling enforced criteria enable the identification of obstructed atomic bands without knowing the representations of the band structures. Hence, no ab initio calculations are needed for the filling enforced criteria, although they are needed to obtain the band gaps. With the help of the Topological Quantum Chemistry website, we have performed a high-throughput search for feOAIs and have found that 957 ICSD entries (638 unique materials) are paramagnetic feOAIs, among which 738 (475) materials have an indirect gap. The metallic obstructed surface states of feOAIs are also showcased by several material examples.

中文翻译:

填充强制阻塞原子绝缘体

拓扑能带理论在顺磁和磁性晶体材料中拓扑能带结构的高通量搜索方面取得了巨大成功。然而,很大一部分材料在费米能级上是拓扑平凡的绝缘体。在本文中,我们表明,值得注意的是,对于拓扑平凡绝缘体的子集,仅知道它们的电子数和原子的威科夫位置,我们可以将它们分成两组:阻塞原子绝缘体(OAI)和原子绝缘体(人工智能)。有趣的基团 OAI 的电荷中心并不位于原子上。利用拓扑量子化学理论,在这项工作中,我们首先推导了拓扑平凡绝缘体成为 1651 Shubnikov 空间群中的填充强制阻碍原子绝缘体(feOAI)的充分必要条件。值得注意的是,填充强制标准使得能够在不知道能带结构的表示的情况下识别受阻原子带。因此,填充强制标准不需要从头计算,尽管需要从头计算来获得带隙。在拓扑量子化学网站的帮助下,我们对feOAI进行了高通量搜索,发现957个ICSD条目(638种独特材料)是顺磁feOAI,其中738(475)种材料具有间接间隙。几个材料示例也展示了 feOAI 的金属阻挡表面状态。
更新日期:2024-04-19
down
wechat
bug