当前位置: X-MOL 学术Eng. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A conceptual model for evaluating the stability of high-altitude ice-rich slopes through coupled thermo-hydro-mechanical simulation
Engineering Geology ( IF 7.4 ) Pub Date : 2024-04-20 , DOI: 10.1016/j.enggeo.2024.107514
Mingdong Wei , Limin Zhang , Ruochen Jiang

The collapse of glacial, permafrost, and ice-rich moraine slopes in high-altitude mountainous areas not only threatens downstream residents and infrastructure but also displaces ice mass to lower and warmer elevations, accelerating glacial ablation to some extent. Despite being considered rare, ice-rich slopes collapse more frequently than commonly thought due to climate change. For example, two adjacent mountain glaciers in the Aru Range of the Tibetan Plateau, characterized by large volumes (68 × 10 m and 83 × 10 m, respectively) and low surface slope angles (12.3° and 12.9°, respectively), collapsed surprisingly in 2016. While the mechanisms behind these collapses have garnered broad attention, the ability to quantitatively assess the instability of ice-rich slopes remains limited due to the complex interplay of multi-physical processes. Taking the Aru glacier collapses as reference cases, this paper presents a conceptual model, implemented through coupled thermo-hydro-mechanical simulation, to evaluate the stability of high-altitude ice-rich slopes due to climate change, rainfall and ice ablation. Results indicate that the methodology captures the effects of temperature change, rainfall and meltwater on the instability events well, demonstrating promising potential in evaluating potential collapse zones of ice-rich slopes similar to the Aru glaciers. Furthermore, the role of climate change in the well-known Aru events is demonstrated using a state-of-the-art global climate reanalysis dataset. Findings reveal that the increase in liquid water infiltrating the Aru glaciers since 2010 was a critical factor leading to the instability events.

中文翻译:

通过热-水-力耦合模拟评估高海拔富冰边坡稳定性的概念模型

高海拔山区冰川、多年冻土和富冰碛坡的崩塌不仅威胁下游居民和基础设施,而且使冰块向更低、更温暖的海拔移动,在一定程度上加速了冰川消融。尽管被认为很罕见,但由于气候变化,富含冰的斜坡塌陷的频率比通常认为的要高。例如,青藏高原阿鲁山脉的两条相邻山地冰川,其体积大(分别为68×10 m和83×10 m)和低表面坡角(分别为12.3°和12.9°),却意外地崩塌了。 2016年。虽然这些崩塌背后的机制引起了广泛关注,但由于多物理过程的复杂相互作用,定量评估富含冰的斜坡的不稳定性的能力仍然有限。本文以阿鲁冰川崩塌为参考案例,提出了一个概念模型,通过热-水-力耦合模拟来评估气候变化、降雨和冰消融造成的高海拔富冰斜坡的稳定性。结果表明,该方法很好地捕捉了温度变化、降雨和融水对不稳定事件的影响,显示出在评估类似于阿鲁冰川的富含冰的斜坡的潜在崩塌区方面的巨大潜力。此外,气候变化在著名的阿鲁事件中的作用通过最先进的全球气候再分析数据集得到了证明。研究结果表明,自2010年以来渗入阿鲁冰川的液态水增加是导致不稳定事件的关键因素。
更新日期:2024-04-20
down
wechat
bug