当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable memory window in two-dimensional hybrid van der Waals heterostructured devices
Applied Physics Letters ( IF 4 ) Pub Date : 2024-04-22 , DOI: 10.1063/5.0187299
Huijuan Zhao 1 , Jingxuan Ma 1 , Shuhan Li 1 , Yang Yang 2 , Zhangxia Wang 3 , Zhongzhong Luo 4 , Xiaohan Guo 1 , Bing Luo 1 , Li Zhu 5 , Lianhui Wang 1 , Li Gao 1, 6
Affiliation  

Van der Waals (vdW) heterostructures based on inorganic layered materials have been demonstrated as potential candidates for a variety of electronic applications due to their flexibility in energy band engineering. However, the presence of unstable charge-trapping states in atomically thin two-dimensional (2D) materials may limit the performance of devices. Here, we aim to conduct a systematic investigation on hybrid heterostructured memory devices that consist of 2D layered organic and inorganic materials. The objective is to explore the potential of these devices in offering efficient charge-trapping states. Molybdenum disulfide (MoS2) is employed as a channel, while N, N′-Dimethyl-3,4,9,10-perylenedicarboximide (Me-PTCDI) serves as the charge-trapping layer to store charges from MoS2. The hysteresis window of these heterostructured devices can be effectively modified within a range of 13–70 V by manipulating both the thickness of the organic layer and the gate voltages. The largest hysteresis window is found in a combination of a few-layer Me-PTCDI (12.6 nm) and MoS2 (6 nm), showing a high on/off current ratio (>104) and a long retention time (104 s). Furthermore, the endurance test, which lasts for over 1000 cycles, demonstrates an exceptional level of stability and reliability. In addition, multilevel memory effects can be observed when gate pulses with different widths and amplitudes are applied. These 2D hybrid heterostructured devices have the capability to broaden the scope of material systems and present substantial potential for functional neuromorphic applications.

中文翻译:

二维混合范德华异质结构器件中的可控存储窗口

基于无机层状材料的范德华(vdW)异质结构因其在能带工程中的灵活性而被证明是各种电子应用的潜在候选者。然而,原子薄二维(2D)材料中不稳定电荷捕获态的存在可能会限制器件的性能。在这里,我们的目标是对由二维层状有机和无机材料组成的混合异质结构存储器件进行系统研究。目的是探索这些器件在提供有效电荷捕获状态方面的潜力。采用二硫化钼(MoS2)作为沟道,而N,N'-二甲基-3,4,9,10-苝二甲酰亚胺(Me-PTCDI)作为电荷捕获层来存储来自MoS2的电荷。通过控制有机层的厚度和栅极电压,可以在 13-70 V 的范围内有效地修改这些异质结构器件的磁滞窗口。最大的滞后窗口出现在几层 Me-PTCDI (12.6 nm) 和 MoS2 (6 nm) 的组合中,表现出高开/关电流比 (>104) 和长保留时间 (104 s) 。此外,持续超过 1000 次循环的耐久性测试表明了卓越的稳定性和可靠性。此外,当施加不同宽度和幅度的门脉冲时,可以观察到多级记忆效应。这些二维混合异质结构器件能够扩大材料系统的范围,并为功能性神经形态应用提供巨大的潜力。
更新日期:2024-04-22
down
wechat
bug