当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bamboo leaf-derived biochar/iron silicate composite for an adsorption-degradation synergistic removal of ciprofloxacin
Process Safety and Environmental Protection ( IF 7.8 ) Pub Date : 2024-04-16 , DOI: 10.1016/j.psep.2024.04.074
Meng Xu , Junshu Wu , Jinshu Wang , Wenyuan Zhou , Yongli Li , Hongyi Li

Antibiotics pose significant risks to both the environment and human health. Herein, we develop a collaborative strategy for the enhanced removal of a typical antibiotic, Ciprofloxacin (CIP), by using a bamboo leaf-derived biochar/iron silicate composite (BL-FeSi) with the assistance of peroxymonosulfate (PMS). The rationale behind the design is the construction of composited material with synergistic adsorption-catalysis functions, based on covalent bonding networks of the biochar and specific Fe(III)/Fe(II) redox chemistry of iron silicate in PMS activation system. H reduction of pristine BL-FeSi increases Fe(II) content and thus improves catalytic activity. Batch experiments demonstrate that the preferred BL-FeSi (H treatment at 400 °C) exhibits superior efficiency in activating PMS. The CIP removal efficiency is highly dependent on pH value of reaction solution. A remarkable 97% removal is achieved at pH = 5.5 (CIP: 60 mL, 20 mg/L; BL-FeSi: 0.2 g/L, PMS: 0.2 g/L), and the pH increase to 11 results in 100% CIP removal. The BL-FeSi shows robust resistance to inorganic ions (NO, SO, HCO, and HPO), and the catalytic activity remains consistently high (>82%) even after four consecutive cycles, making it highly promising for practical applications. It is found that both radical pathway (•OH and SO) and nonradical pathway (O) contribute to CIP degradation in the BL-FeSi/PMS system, while the active •OH dominates the oxidization process. The coupling of adsorption and degradation holds great potentials for effective removal of more organic contaminants.

中文翻译:

竹叶生物炭/硅酸铁复合物吸附-降解协同去除环丙沙星

抗生素对环境和人类健康都构成重大风险。在此,我们开发了一种协作策略,通过使用竹叶衍生的生物炭/硅酸铁复合材料(BL-FeSi)在过一硫酸盐(PMS)的帮助下增强典型抗生素环丙沙星(CIP)的去除。该设计的基本原理是基于生物炭的共价键网络和 PMS 活化系统中硅酸铁的特定 Fe(III)/Fe(II) 氧化还原化学,构建具有协同吸附催化功能的复合材料。原始 BL-FeSi 的 H 还原增加了 Fe(II) 含量,从而提高了催化活性。批量实验表明,首选的 BL-FeSi(400 °C H 处理)在激活 PMS 方面表现出卓越的效率。 CIP去除效率高度依赖于反应溶液的pH值。 pH = 5.5 时去除率达到 97%(CIP:60 mL,20 mg/L;BL-FeSi:0.2 g/L,PMS:0.2 g/L),pH 值增加至 11 时,CIP 达到 100%移动。 BL-FeSi对无机离子(NO、SO、HCO和HPO)表现出强大的抵抗力,即使在连续四个循环后,催化活性仍然保持较高的活性(> 82%),使其在实际应用中极具前景。研究发现,自由基途径(·OH和SO)和非自由基途径(O)均有助于BL-FeSi/PMS系统中的CIP降解,而活性·OH主导氧化过程。吸附和降解的耦合具有有效去除更多有机污染物的巨大潜力。
更新日期:2024-04-16
down
wechat
bug