当前位置: X-MOL 学术Veh. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation and analysis of 5G waveforms to reduce BER for vehicular communications
Vehicular Communications ( IF 6.7 ) Pub Date : 2024-04-16 , DOI: 10.1016/j.vehcom.2024.100777
Fowzia Sultana Sowdagar , Krishna Naik Karamtot

In today's rapidly evolving world, wireless communication has become a pervasive force, profoundly impacting various facets of our daily lives. Wireless Vehicular Networks stand out as a captivating realm of research, with a key focus on fostering information exchange among autonomous vehicles. As researchers witness surging demand in this domain, there is a growing emphasis on devising advanced techniques to augment network performance, particularly within the context of Fifth-generation (5G) applications, such as vehicular communication. The concept of Vehicle-to-vehicle (V2V) communications is poised to play a pivotal role in the future, presenting formidable challenges for the air interface by accommodating asynchronous multiple access and high mobility. Within this dynamic landscape, security and privacy issues loom large for 5G-enabled vehicle networks, many of which remain largely unexplored. The conventional waveforms, including Orthogonal Frequency Division Multiplexing (OFDM), may fall short of meeting these evolving standards. In this paper, authors delve into a comparative exploration of two waveform families, namely Filter Bank Multicarrier (FBMC) and Universal Filtered Multi-Carrier (UFMC), concerning their design and performance trade-offs. authors also examine their compatibility with various digital modulation schemes like 4-Quadrature Amplitude Modulation (QAM), 16-QAM, Offset Quadrature Phase Shift Keying (OQPSK), and Shaped offset OQPSK (SOQPSK). Through MATLAB simulations, our research vividly demonstrates the superior performance of UFMC when juxtaposed with OFDM and FBMC, especially concerning Bit Error Rate (BER) in both Rayleigh and Nakagami fading channels. In particular, authors consider a Nakagami shape parameter of 10, which yields a remarkable minimum BER for UFMC.

中文翻译:

仿真和分析 5G 波形以降低车辆通信的 BER

在当今快速发展的世界中,无线通信已成为一种普遍的力量,深刻影响着我们日常生活的各个方面。无线车辆网络作为一个迷人的研究领域脱颖而出,其重点是促进自动驾驶车辆之间的信息交换。随着研究人员目睹该领域的需求激增,人们越来越重视设计先进技术来增强网络性能,特别是在第五代 (5G) 应用(例如车辆通信)的背景下。车对车 (V2V) 通信的概念有望在未来发挥关键作用,通过适应异步多址和高移动性,给空中接口带来巨大的挑战。在这种动态格局中,5G 车辆网络的安全和隐私问题显得尤为突出,其中许多问题在很大程度上尚未得到探索。包括正交频分复用 (OFDM) 在内的传统波形可能无法满足这些不断发展的标准。在本文中,作者深入研究了滤波器组多载波 (FBMC) 和通用滤波多载波 (UFMC) 这两个波形系列的设计和性能权衡的比较探索。作者还检查了它们与各种数字调制方案的兼容性,例如 4 正交幅度调制 (QAM)、16-QAM、偏移正交相移键控 (OQPSK) 和整形偏移 OQPSK (SOQPSK)。通过 MATLAB 仿真,我们的研究生动地展示了 UFMC 与 OFDM 和 FBMC 并列时的优越性能,特别是瑞利和 Nakagami 衰落信道中的误码率 (BER)。特别是,作者考虑了 Nakagami 形状参数为 10,这为 UFMC 产生了显着的最小 BER。
更新日期:2024-04-16
down
wechat
bug