当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In silico model of colon electromechanics for manometry prediction after laser tissue soldering
Computer Methods in Applied Mechanics and Engineering ( IF 7.2 ) Pub Date : 2024-04-22 , DOI: 10.1016/j.cma.2024.116989
René Thierry Djoumessi , Pietro Lenarda , Alessio Gizzi , Simone Giusti , Pietro Alduini , Marco Paggi

The present study introduces an advanced multi-physics and multi-scale modeling approach to investigate in silico colon motility. We introduce a generalized electromechanical framework, integrating cellular electrophysiology and smooth muscle contractility, thus advancing a first-of-its-kind computational model of colon motility after intraluminal laser tissue soldering. The proposed theoretical framework comprises three main elements: a microstructural material model describing intestine wall geometry and composition of reinforcing fibers, with four fiber families, two active–conductive and two passive; an electrophysiological model describing the propagation of slow waves, based on a fully-coupled nonlinear phenomenological approach; and a thermodynamical consistent mechanical model describing the hyperelastic energetic contributions ruling tissue equilibrium under diverse loading conditions. The active strain approach was adopted to describe tissue electromechanics, thus solving the governing equations via a staggered finite element scheme. The computational framework was fine-tuned according to state-of-the-art experimental evidence, and extensive numerical analyses were conducted to compare and contrast clinical manometric traces. The model proved capable of reproducing both qualitatively and quantitatively high or low-amplitude propagation contractions demonstrating that material properties of the deposited tissue are critical to restoring a proper peristaltic activity.

中文翻译:

用于激光组织焊接后测压预测的结肠机电计算机模型

本研究引入了一种先进的多物理和多尺度建模方法来研究硅结肠运动。我们引入了一个广义的机电框架,集成了细胞电生理学和平滑肌收缩力,从而提出了腔内激光组织焊接后结肠运动的第一个计算模型。所提出的理论框架包括三个主要要素:描述肠壁几何形状和增强纤维组成的微观结构材料模型,具有四个纤维家族,两个主动传导纤维和两个被动纤维;基于全耦合非线性现象学方法的描述慢波传播的电生理学模型;以及描述不同负载条件下决定组织平衡的超弹性能量贡献的热力学一致力学模型。采用主动应变方法来描述组织机电,从而通过交错有限元方案求解控制方程。根据最先进的实验证据对计算框架进行了微调,并进行了广泛的数值分析来比较和对比临床测压痕迹。事实证明,该模型能够定性和定量地再现高或低幅度的传播收缩,这表明沉积组织的材料特性对于恢复适当的蠕动活动至关重要。
更新日期:2024-04-22
down
wechat
bug