Skip to main content
Log in

Rank and duality in representation theory

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

There is both theoretical and numerical evidence that the set of irreducible representations of a reductive group over local or finite fields is naturally partitioned into families according to analytic properties of representations. Examples of such properties are the rate of decay at infinity of “matrix coefficients” in the local field setting, and the order of magnitude of “character ratios” in the finite field situation.

In these notes we describe known results, new results, and conjectures in the theory of “size” of representations of classical groups over finite fields (when correctly stated, most of them hold also in the local field setting), whose ultimate goal is to classify the above mentioned families of representations and accordingly to estimate the relevant analytic properties of each family.

Specifically, we treat two main issues: the first is the introduction of a rigorous definition of a notion of size for representations of classical groups, and the second issue is a method to construct and obtain information on each family of representation of a given size.

In particular, we propose several compatible notions of size that we call U-rank, tensor rank and asymptotic rank, and we develop a method called eta correspondence to construct the families of representation of each given rank.

Rank suggests a new way to organize the representations of classical groups over finite and local fields—a way in which the building blocks are the “smallest” representations. This is in contrast to Harish-Chandra’s philosophy of cusp forms that is the main organizational principle since the 60s, and in it the building blocks are the cuspidal representations which are, in some sense, the “largest”. The philosophy of cusp forms is well adapted to establishing the Plancherel formula for reductive groups over local fields, and led to Lusztig’s classification of the irreducible representations of such groups over finite fields. However, the understanding of certain analytic properties, such as those mentioned above, seems to require a different approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. J. Adams and A. Moy, Unipotent representations and reductive dual pairs over finite fields, Trans. Amer. Math. Soc., 340 (1993), 309–321.

    MathSciNet  MATH  Google Scholar 

  2. E. Artin, Geometric Algebra, Interscience Publisher, 1957.

  3. A.-M. Aubert, W. Kraskiewicz and T. Przebinda, Howe correspondence and Springer correspondence for dual pairs over a finite field, In: Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics, Proc. Sympos. Pure Math., 92, Amer. Math. Soc., Providence, RI, 2016, pp. 17–44.

    MathSciNet  MATH  Google Scholar 

  4. A.-M. Aubert, J. Michel and R. Rouquier, Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 83 (1996), 353–397.

    MathSciNet  MATH  Google Scholar 

  5. L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math., 14 (1971), 255–354.

    MathSciNet  MATH  Google Scholar 

  6. P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard and M. Vergne, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France. No. 4, Paris, 1972.

  7. A. Borel, Linear Algebraic Groups. 2nd ed., Grad. Texts in Math., 126, Springer-Verlag, 1991.

  8. R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. Math., 57 (1935), 425–449.

    MathSciNet  MATH  Google Scholar 

  9. R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley Classics Library, 1993.

  10. W. Casselman, H. Hecht and D. Miličić, Bruhat filtrations and Whittaker vectors for real groups, In: The Mathematical Legacy of Harish-Chandra, Baltimore, MD, 1998, Proc. Sympos. Pure Math., 68, Amer. Math. Soc., Providence, RI, 2000, pp. 151–190.

    MathSciNet  MATH  Google Scholar 

  11. T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation Theory of the Symmetric Groups. The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras, Cambridge Stud. Adv. Math., 121, Cambridge Univ. Press, Cambridge, 2010.

    Google Scholar 

  12. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Math., 11, Interscience Publ., New York, 1962.

    Google Scholar 

  13. P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Notes Monogr. Ser., 11, Inst. Math. Statist., Hayward, CA, 1988.

    MATH  Google Scholar 

  14. P. Diaconis, The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 1659–1664.

    MathSciNet  MATH  Google Scholar 

  15. P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159–179.

    MathSciNet  MATH  Google Scholar 

  16. W. Duke, R. Howe and J.-S. Li, Estimating Hecke eigenvalues of Siegel modular forms, Duke Math. J., 67 (1992), 219–240.

    MathSciNet  MATH  Google Scholar 

  17. W. Feit, The Representation Theory of Finite Groups, North-Holland Mathematical Library, 25, North-Holland Publ. Co., 1982.

  18. F.G. Frobenius, Über Gruppencharaktere, Sitzber. Preuss. Akad. Wiss., 1896, pp. 985–1021.

  19. W. Fulton, Young Tableaux, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997.

    Google Scholar 

  20. W.T. Gan and S. Takeda, A proof of the Howe duality conjecture, J. Amer. Math. Soc., 29 (2016), 473–493.

    MathSciNet  MATH  Google Scholar 

  21. S.S. Gelbart, Automorphic forms on adèle groups, Ann. of Math. Stud., 83, Princeton Univ. Press, Princeton, NJ, 1975.

    Google Scholar 

  22. S.S. Gelbart, Examples of dual reductive pairs, In: Automorphic Forms, Representations and L-functions, Oregon State Univ., Corvallis, OR, 1977, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 287–296.

    Google Scholar 

  23. S.I. Gelfand, Representations of the full linear group over a finite field, Math. USSR-Sb., 12 (1970), 13–39.

    Google Scholar 

  24. P. Gérardin, Weil representations associated to finite fields, J. Algebra, 46 (1977), 54–101.

    MathSciNet  MATH  Google Scholar 

  25. D. Gluck, Characters and random walks on finite classical groups, Adv. Math., 129 (1997), 46–72.

    MathSciNet  MATH  Google Scholar 

  26. J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955), 402–447.

    MathSciNet  MATH  Google Scholar 

  27. V.W. Guillemin and S. Sternberg, Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915–955.

    MathSciNet  MATH  Google Scholar 

  28. R.M. Guralnick, M. Larsen and P.H. Tiep, Character levels and character bounds, preprint, arXiv:1708.03844.

  29. R.M. Guralnick and G. Malle, Rational rigidity for Eg(p), Compos. Math., 150 (2014), 1679–1702.

    MathSciNet  MATH  Google Scholar 

  30. S. Gurevich, Small Representations of Finite Classical Groups, Special Lecture at IAS, March 8, 2017, https://video.ias.edu/specialrep/2017/0308-ShamgarGurevich.

  31. S. Gurevich and R. Hadani, The geometric Weil representation, Selecta Math. (N.S.), 13 (2007), 465–481.

    MathSciNet  MATH  Google Scholar 

  32. S. Gurevich and R. Hadani, Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom., 7 (2009), 475–502.

    MathSciNet  MATH  Google Scholar 

  33. S. Gurevich and R. Howe, Small representations of finite classical groups, In: Representation Theory, Number Theory, and Invariant Theory. In Honor of Roger Howe on the Occasion of his 70th Birthday, Yale Univ., 2015, Progr. Math., 323, Birkh&.#x00E4;user, 2017, pp. 209–234.

    MathSciNet  MATH  Google Scholar 

  34. S. Gurevich and R. Howe, Harmonic analysis on GLn over finite fields, in preparation (2017).

  35. S. Gurevich and R. Howe, A look at representations of SL2(\(S{L_2}\left( {{\Bbb F}q} \right)\)) through the lens of size, São Paulo J. Math. Sci., 12 (2018), 252–277.

    MathSciNet  Google Scholar 

  36. S. Gurevich and R. Howe, The Pieri rule for GLn over finite fields, in preparation (2020).

  37. Harish-Chandra, Eisenstein series over finite fields, In: Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 76–88.

  38. M. Hildebrand, Generating random elements in SLn(Fq) by random transvections, J. Algebraic Combin., 1 (1992), 133–150.

    MathSciNet  MATH  Google Scholar 

  39. R. Howe, On the character of Weil’s representation, Trans. Amer. Math. Soc., 177 (1973), 287–298.

    MathSciNet  MATH  Google Scholar 

  40. R. Howe, Invariant theory and duality for classical groups over finite fields with applications to their singular representation theory, preprint, Yale Univ., 1973.

  41. R. Howe, θ-series and invariant theory, In: Automorphic Forms, Representations and L-Functions, Oregon State Univ., Corvallis, OR, 1977, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.

    Google Scholar 

  42. R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.), 3 (1980), 821–843.

    MathSciNet  MATH  Google Scholar 

  43. R. Howe, On a notion of rank for unitary representations of the classical groups, In: Harmonic Analysis and Group Representations, Liguori, Naples, 1982, pp. 223–331.

    Google Scholar 

  44. R. Howe, Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons, In: Applications of Group Theory in Physics and Mathematical Physics, Lectures in Appl. Math., 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179–207.

    MathSciNet  MATH  Google Scholar 

  45. R. Howe, Harish-Chandra Homomorphisms for Ƿ-Adic Groups. With the collaboration of A. Moy, CBMS Regional Conf. Ser. in Math., 59, Amer. Math. Soc., Providence, RI, 1986.

    Google Scholar 

  46. R. Howe, The oscillator semigroup, In: The Mathematical Heritage of Hermann Weyl, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132.

    Google Scholar 

  47. R. Howe, On the Role of Rank in Representation Theory of the Classical Groups, Special Lecture at IAS, March 8, 2017, https://video.ias.edu/reptheory/2017/0308-RogerHowe.

  48. R. Howe, Duality and Rank in Representation Theory, Video of the 19th Takagi Lectures, RIMS, Kyoto Univ., Japan, July 8–9, 2017, http://www.ms.u-tokyo.ac.jp/toshi/jjm/JJM_HP/contents/takagi/19th/takagi19-video.htm.

  49. I.M. Isaacs, Character Theory of Finite Groups, Pure Appl. Math., 69, Academic Press, 1976.

  50. N. Jacobson, Lie Algebras, Dover Publ., New York, NY, 1979.

    MATH  Google Scholar 

  51. H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France, 95 (1967), 243–309.

    MathSciNet  MATH  Google Scholar 

  52. A.A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk, 17 (1962), no. 4, 57–110.

    MathSciNet  MATH  Google Scholar 

  53. A.A. Kirillov, Lectures on the Orbit Method, Grad. Stud. Math., 64, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  54. A.W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Math. Ser., 36, Princeton Univ. Press, 1986.

  55. B. Kostant, On Whittaker vectors and representation theory, Invent. Math., 48 (1978), 101–184.

    MathSciNet  MATH  Google Scholar 

  56. S.S. Kudla, On the local theta-correspondence, Invent. Math., 83 (1986), 229–255.

    MathSciNet  MATH  Google Scholar 

  57. S.S. Kudla and J.J. Millson, The theta correspondence and harmonic forms. I, Math. Ann., 274 (1986), 353–378.

    MathSciNet  MATH  Google Scholar 

  58. T.Y. Lam, The Algebraic Theory of Quadratic Forms, Mathematics Lecture Note Series, W. A. Benjamin, MA, 1973.

  59. S. Lang, Algebra. Revised 3rd ed., Grad. Texts in Math., 211, Springer-Verlag, 2002.

  60. M. Larsen, A. Shalev and P.H. Tiep, The Waring problem for finite simple groups, Ann. of Math. (2), 174 (2011), 1885–1950.

    Google Scholar 

  61. J.-S. Li, Singular unitary representations of classical groups, Invent. Math., 97 (1989), 237–255.

    MathSciNet  MATH  Google Scholar 

  62. J.-S. Li, On the classification of irreducible low rank unitary representations of classical groups, Compositio Math., 71 (1989), 29–48.

    MathSciNet  MATH  Google Scholar 

  63. J.-S. Li, Nonexistence of singular cusp forms, Compositio Math., 83 (1992), 43–51.

    MathSciNet  Google Scholar 

  64. M.W. Liebeck, Character ratios for finite groups of Lie type, and applications, In: Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math., 694, Amer. Math. Soc., Providence, RI, 2017, pp. 193–208.

    MathSciNet  Google Scholar 

  65. M.W. Liebeck, E.A. O’Brien, A. Shalev and P.H. Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS), 12 (2010), 939–1008.

    MathSciNet  MATH  Google Scholar 

  66. M.W. Liebeck and A. Shalev, Character degrees and random walks in finite groups of Lie type, Proc. London Math. Soc. (3), 90 (2005), 61–86.

    MathSciNet  MATH  Google Scholar 

  67. G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Stud., 107, Princeton Univ. Press, Princeton, NJ, 1984.

  68. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Oxford Univ. Press, New York, 1979.

    Google Scholar 

  69. G.W. Mackey, A theorem of Stone and von Neumann, Duke Math. J., 16 (1949), 313–326.

    MathSciNet  MATH  Google Scholar 

  70. G. Malle, The proof of Ore’s conjecture, Astérisque, 361 (2014), 325–348.

    MATH  Google Scholar 

  71. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62.

    MathSciNet  MATH  Google Scholar 

  72. C. Mœglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math., 1291, Springer-Verlag, 1987.

  73. G.D. Mostow and J.H. Sampson, Linear Algebra, McGraw-Hill Book Co., 1969.

  74. M. Nazarov, Oscillator semigroup over a non-Archimedean field, J. Funct. Anal., 128 (1995), 384–438.

    MathSciNet  MATH  Google Scholar 

  75. D. Prasad, Weil representation, Howe duality, and the theta correspondence, In: Theta Functions: From the Classical to the Modern, CRM Proc. Lecture Notes, 1, Amer. Math. Soc., Providence, RI, 1993, pp. 105–127.

    MathSciNet  MATH  Google Scholar 

  76. L. Pukánszky, Leçons sur les représentations des groupes, Monographies de la Société Mathématique de France, 2, Paris, 1966.

  77. L. Pukánszky, Unitary representations of Lie groups with cocompact radical and applications, Trans. Amer. Math. Soc., 236 (1978), 1–49.

    MathSciNet  MATH  Google Scholar 

  78. L. Saloff-Coste, Random walks on finite groups, In: Probability on Discrete Structures, Encyclopaedia Math. Sci., 110, Probab. Theory, 1, Springer-Verlag, 2004, pp. 263–346.

    MathSciNet  MATH  Google Scholar 

  79. J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, 1977.

  80. A. Shalev, Commutators, words, conjugacy classes and character methods, Turkish J. Math., 31 (2007), 131–148.

    MathSciNet  MATH  Google Scholar 

  81. A. Shalev, Word maps, iconjugacy classes, and a noncommutative Waring-type theorem, Ann. of Math. (2), 170 (2009), 1383–1416.

    MathSciNet  MATH  Google Scholar 

  82. A. Shalev, Conjugacy classes, growth and complexity, In: Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math., 694, Amer. Math. Soc., Providence, RI, 2017, pp. 209–221.

    MathSciNet  Google Scholar 

  83. J.A. Shalika, The multiplicity one theorem for GLn, Ann. of Math. (2), 100 (1974), 171–193.

    MathSciNet  MATH  Google Scholar 

  84. B. Srinivasan, Weil representations of classical groups, Invent. Math., 51 (1979), 143–153.

    MathSciNet  MATH  Google Scholar 

  85. R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, In: Colloque sur la Théoriedes Groupes Algébriques, Bruxelles, 1962, pp. 113–127.

  86. G. Strang, Linear Algebra and Its Applications, Academic Press, 1976.

  87. M. Vergne, Representations of Lie groups and the orbit method, In: Emmy Noether in Bryn Mawr, Springer-Verlag, 1983, pp. 59–101.

  88. D.A. Vogan, Jr., The size of infinite dimensional representations, In: Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math., 795, Springer-Verlag, 1980, pp. 172–178.

    MathSciNet  MATH  Google Scholar 

  89. D.A. Vogan, Jr., The size of infinite-dimensional representations, Takagi Lectures (2016); Jpn. J. Math., 12 (2017), 175–210.

    MathSciNet  MATH  Google Scholar 

  90. N.R. Wallach, Real Reductive Groups. I, Pure Appl. Math., 132, Academic Press, Boston, MA, 1988.

    Google Scholar 

  91. N.R. Wallach, Real Reductive Groups. II, Pure Appl. Math., 132-II, Academic Press, Boston, MA, 1992.

    Google Scholar 

  92. A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math., 111 (1964), 143–211.

    MathSciNet  MATH  Google Scholar 

  93. A. Weil, Basic Number Theory. 3rd ed., Die Grundlehren der Mathematischen Wissenschaften, 144, Springer-Verlag, 1974.

  94. A.D. Weinstein, The symplectic “category”, In: Differential Geometric Methods in Mathematical Physics, Lecture Notes in Math., 905, Springer-Verlag, 1982, pp. 45–51.

    MathSciNet  MATH  Google Scholar 

  95. H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Univ. Press, 1939.

  96. A.V. Zelevinsky, Representations of finite classical groups, In: A Hopf Algebra Approach, Lecture Notes in Math., 869, Springer-Verlag, 1981, pp. 107–148.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the organizers of 19th Takagi Lectures (RIMS—Kyoto University, Japan, July 8–9, 2017), in particular T. Kobayashi, for the invitation to present this work at the event.

We thank J. Bernstein for sharing some of his thoughts concerning the organization of representations by small ones.

We thank J. Cannon of the University of Sydney and S. Goldstein of the University of Wisconsin at Madison for help with the numerical computations using the computer system Magma.

Parts of these notes were written while we were participating in the program “Representation Theory of Reductive Groups Over Local Fields and Applications to Automorphic forms”, May 3-June 30, 2017, and visitors at the Weizmann Institute—Israel, and we thank the organizers, especially D. Gourevitch and the math department chair O. Sarig, for the invitation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shamgar Gurevich or Roger Howe.

Additional information

Communicated by: Toshiyuki Kobayashi

This article is based on the 19th Takagi Lectures[48] that the second author delivered at Research Institute for Mathematical Sciences, Kyoto University on July 8 and 9, 2017.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, S., Howe, R. Rank and duality in representation theory. Jpn. J. Math. 15, 223–309 (2020). https://doi.org/10.1007/s11537-020-1728-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-020-1728-3

Keywords and phrases

Mathematics Subject Classification (2020)

Navigation