Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access July 1, 2020

Higher Dimensional Holonomy Map for Ruled Submanifolds in Graded Manifolds

  • Gianmarco Giovannardi

Abstract

The deformability condition for submanifolds of fixed degree immersed in a graded manifold can be expressed as a system of first order PDEs. In the particular but important case of ruled submanifolds, we introduce a natural choice of coordinates, which allows to deeply simplify the formal expression of the system, and to reduce it to a system of ODEs along a characteristic direction. We introduce a notion of higher dimensional holonomy map in analogy with the one-dimensional case [29], and we provide a characterization for singularities as well as a deformability criterion.

MSC 2010: 58H99; 49Q99; 58A17

References

[1] A. A. Agrachev and A. V. Sarychev. Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(6):635–690, 1996.10.1016/s0294-1449(16)30118-4Search in Google Scholar

[2] Andrei Agrachev, Davide Barilari, and Ugo Boscain. Introduction to geodesics in sub-Riemannian geometry. In Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. II, EMS Ser. Lect. Math., pages 1–83. Eur. Math. Soc., Zürich, 2016.10.4171/163-1/1Search in Google Scholar

[3] Andrei A. Agrachev and Yuri L. Sachkov. Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2004. Control Theory and Optimization, II.10.1007/978-3-662-06404-7Search in Google Scholar

[4] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 29(3):969–996, 2013.10.4171/RMI/746Search in Google Scholar

[5] A. Bellaïche. The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math. 144:1–78, Birkhäuser, Basel, 1996.10.1007/978-3-0348-9210-0_1Search in Google Scholar

[6] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.10.1007/978-0-387-70914-7Search in Google Scholar

[7] J. K. Brooks and P. W. Lewis. Linear operators and vector measures. Trans. Amer. Math. Soc., 192:139–162, 1974.10.1090/S0002-9947-1974-0338821-5Search in Google Scholar

[8] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths. Exterior differential systems, volume 18 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1991.10.1007/978-1-4613-9714-4Search in Google Scholar

[9] Robert L. Bryant. On notions of equivalence of variational problems with one independent variable. In Differential geometry: the interface between pure and applied mathematics (San Antonio, Tex., 1986), volume 68 of Contemp. Math., pages 65–76. Amer. Math. Soc., Providence, RI, 1987.10.1090/conm/068/924805Search in Google Scholar

[10] Robert L. Bryant and Lucas Hsu. Rigidity of integral curves of rank 2 distributions. Invent. Math., 114(2):435–461, 1993.10.1007/BF01232676Search in Google Scholar

[11] Élie Cartan. Leçons sur la géométrie projective complexe. La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile. Leçons sur la théorie des espaces à connexion projective. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Sceaux, 1992. Reprint of the editions of 1931, 1937 and 1937.Search in Google Scholar

[12] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428–517, 1999.10.1007/s000390050094Search in Google Scholar

[13] G. Citti and A. Sarti. A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision, 24(3):307–326, 2006.10.1007/s10851-005-3630-2Search in Google Scholar

[14] Giovanna Citti, Gianmarco Giovannardi, and Manuel Ritoré. Variational formulas for curves of fixed degree. arXiv:1902.04015, Feb 2019.Search in Google Scholar

[15] Giovanna Citti, Gianmarco Giovannardi, and Manuel Ritoré. Variational formulas for submanifolds of fixed degree. arXiv:1905.05131, May 2019.Search in Google Scholar

[16] Giovanna Citti and Alessandro Sarti, editors. Neuromathematics of vision. Lecture Notes in Morphogenesis. Springer, Heidelberg, 2014.10.1007/978-3-642-34444-2Search in Google Scholar

[17] Giovanna Citti and Alessandro Sarti. Models of the visual cortex in Lie groups. In Harmonic and geometric analysis, Adv. Courses Math. CRM Barcelona, pages 1–55. Birkhäuser/Springer Basel AG, Basel, 2015.10.1007/978-3-0348-0408-0_1Search in Google Scholar

[18] Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.Search in Google Scholar

[19] Allan Dobbins, Steven W Zucker, and Max S Cynader. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature, 329(6138):438–441, 1987.10.1038/329438a0Search in Google Scholar PubMed

[20] Ermal Feleqi and Franco Rampazzo. Iterated Lie brackets for nonsmooth vector fields. NoDEA Nonlinear Differential Equations Appl., 24(6):Art. 61, 43, 2017.10.1007/s00030-017-0484-4Search in Google Scholar

[21] Gerald B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications, A Wiley-Interscience Publication.Search in Google Scholar

[22] Nicola Gigli. Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below. Mem. Amer. Math. Soc., 251(1196):v+161, 2018.10.1090/memo/1196Search in Google Scholar

[23] Phillip A. Griffiths. Exterior differential systems and the calculus of variations, volume 25 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1983.10.1007/978-1-4615-8166-6Search in Google Scholar

[24] Mikhael Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.Search in Google Scholar

[25] Mikhael Gromov. Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math., pages 79–323. Birkhäuser, Basel, 1996.10.1007/978-3-0348-9210-0_2Search in Google Scholar

[26] Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates.Search in Google Scholar

[27] Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson. Sobolev spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. An approach based on upper gradients.10.1017/CBO9781316135914Search in Google Scholar

[28] Henry Hermes. Nilpotent and high-order approximations of vector field systems. SIAM Rev., 33(2):238–264, 1991.10.1137/1033050Search in Google Scholar

[29] Lucas Hsu. Calculus of variations via the Griffiths formalism. J. Differential Geom., 36(3):551–589, 1992.10.4310/jdg/1214453181Search in Google Scholar

[30] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962.10.1113/jphysiol.1962.sp006837Search in Google Scholar PubMed PubMed Central

[31] Enrico Le Donne, Gian Paolo Leonardi, Roberto Monti, and Davide Vittone. Extremal curves in nilpotent Lie groups. Geom. Funct. Anal., 23(4):1371–1401, 2013.10.1007/s00039-013-0226-7Search in Google Scholar

[32] Enrico Le Donne and Valentino Magnani. Measure of submanifolds in the Engel group. Rev. Mat. Iberoam., 26(1):333–346, 2010.10.4171/RMI/603Search in Google Scholar

[33] Gian Paolo Leonardi and Roberto Monti. End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal., 18(2):552–582, 2008.10.1007/s00039-008-0662-ySearch in Google Scholar

[34] Francesco Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory.10.1017/CBO9781139108133Search in Google Scholar

[35] Valentino Magnani and Davide Vittone. An intrinsic measure for submanifolds in stratified groups. Journal für die reine und angewandte Mathematik (Crelles Journal), 2008(619):203–232, 2008.10.1515/CRELLE.2008.044Search in Google Scholar

[36] Richard Montgomery. Abnormal minimizers. SIAM J. Control Optim., 32(6):1605–1620, 1994.10.1137/S0363012993244945Search in Google Scholar

[37] Richard Montgomery. Singular extremals on Lie groups. Math. Control Signals Systems, 7(3):217–234, 1994.10.1007/BF01212270Search in Google Scholar

[38] Richard Montgomery. A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.Search in Google Scholar

[39] Roberto Monti. The regularity problem for sub-Riemannian geodesics. In Geometric control theory and sub-Riemannian geometry, volume 5 of Springer INdAM Ser., pages 313–332. Springer, Cham, 2014.10.1007/978-3-319-02132-4_18Search in Google Scholar

[40] Noemi Montobbio, Alessandro Sarti, and Giovanna Citti. A metric model for the functional architecture of the visual cortex. arXiv:1807.02479, Jul 2018.Search in Google Scholar

[41] Pierre Pansu. Submanifolds and differential forms on Carnot manifolds, after M. Gromov and M. Rumin. arXiv:1604.06333, Apr 2016.Search in Google Scholar

[42] Jean Petitot. Landmarks for Neurogeometry, pages 1–85. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.10.1007/978-3-642-34444-2_1Search in Google Scholar

[43] Paolo Piccione and Daniel V. Tausk. On the Banach differential structure for sets of maps on non-compact domains. Nonlinear Anal., 46(2, Ser. A: Theory Methods):245–265, 2001.10.1016/S0362-546X(00)00116-4Search in Google Scholar

[44] Ludovic Rifford. Sub-Riemannian geometry and optimal transport. SpringerBriefs in Mathematics. Springer, Cham, 2014.10.1007/978-3-319-04804-8Search in Google Scholar

[45] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.Search in Google Scholar

[46] Ivan Singer. Bases in Banach spaces. I. Springer-Verlag, New York-Berlin, 1970. Die Grundlehren der mathematischen Wissenschaften, Band 154.Search in Google Scholar

[47] Héctor J. Sussmann. A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In Sub-Riemannian geometry, volume 144 of Progr. Math., pages 341–364. Birkhäuser, Basel, 1996.10.1007/978-3-0348-9210-0_4Search in Google Scholar

Received: 2019-01-23
Accepted: 2020-04-23
Published Online: 2020-07-01

© 2020 Gianmarco Giovannardi, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/agms-2020-0105/html
Scroll to top button