Skip to main content
Log in

Precise radio astrometry and new developments for the next generation of instruments

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and precision astrometry to be regularly achieved. We review the opportunities provided by the next generation of instruments coming online, which are primarily: SKA, ngVLA, and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays, and optical astrometry from GAIA. From the historical development, we predict the future potential astrometric performance, and, therefore, the instrumental requirements that must be provided to deliver these. The next generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and, therefore, unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright. We foresee a revolution coming from: ultra-high-precision radio astrometry, large surveys of many objects, improved sky coverage, and at new frequency bands other than those available today. These will enable the addressing of a host of innovative open scientific questions in astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Image reproduced with permission from Rioja et al. (2017), copyright by AAS

Fig. 4

Image reproduced with permission from Rioja et al. (2015), copyright by AAS

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Compare Figs. 13.6 and 14.3 in Thompson et al. (2017) for the difference between the dependence of the troposphere and the ionosphere.

  2. https://www.almaobservatory.org.

  3. http://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/vlbi, http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/lbaops/lbascheduling.

References

  • Abellán FJ, Martí-Vidal I, Marcaide JM, Guirado JC (2018) Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands. Astron Astrophys 614:A74. https://doi.org/10.1051/0004-6361/201731869

    Article  ADS  Google Scholar 

  • Alef W (1988) Test of phase-reference mapping for switched observations. In: Reid MJ, Moran JM (eds) The impact of VLBI on astrophysics and geophysics, IAU symposium, vol 129. Kluwer, Dordrecht, p 523

  • Alef W, Tuccari G, Dornbusch S, Wunderlich M, Pantaleev M, Flygare J, Tercero F, Schoonderbeek G, Hargreaves J, de Wild R, Bezrukovs V, D GJ, López-Pérez JA (2018) BRAND—the next generation receiver for VLBI. In: 14th European VLBI network symposium and users meeting, p 081. https://doi.org/10.22323/1.344.0081

  • Algaba JC, Zhao GY, Lee SS, Byun DY, Kang SC, Kim DW, Kim JY, Kim JS, Kim SW, Kino M, Miyazaki A, Park JH, Trippe S, Wajima K (2015) Interferometric monitoring of gamma-ray bright active galactic nuclei II: frequency phase transfer. J Korean Astron Soc 48:237–255. https://doi.org/10.5303/JKAS.2015.48.5.237. arXiv:1510.05817

    Article  Google Scholar 

  • Algaba JC, Lee SS, Kim DW, Rani B, Hodgson J, Kino M, Trippe S, Park JH, Zhao GY, Byun DY, Gurwell M, Kang SC, Kim JY, Kim JS, Kim SW, Lott B, Miyazaki A, Wajima K (2018) Exploring the variability of the flat spectrum radio source 1633+382. I. Phenomenology of the light curves. Astrophys J 852(1):30. https://doi.org/10.3847/1538-4357/aa9e50. arXiv:1711.10120

    Article  ADS  Google Scholar 

  • An T, Jaiswal S, Mohan P, Zhao Z, Lao B (2019) A cosmic microscope to probe the Universe from Present to Cosmic Dawn: dual-element low-frequency space VLBI observatory. Chin J Space Sci 39(2):242–249. https://doi.org/10.11728/cjss2019.02.242. arXiv:1808.10636

    Article  Google Scholar 

  • Asaki Y, Saito M, Kawabe R, Morita KI, Sasao T (1996) Phase compensation experiments with the paired antennas method. Radio Sci 31:1615–1626. https://doi.org/10.1029/96RS02629

    Article  ADS  Google Scholar 

  • Asaki Y, Sudou H, Kono Y, Doi A, Dodson R, Pradel N, Murata Y, Mochizuki N, Edwards PG, Sasao T, Fomalont EB (2007) Verification of the effectiveness of VSOP-2 phase referencing with a newly developed simulation tool ARIS. Publ Astron Soc Jpn 59:397–418. https://doi.org/10.1093/pasj/59.2.397. arXiv:0707.0558

    Article  ADS  Google Scholar 

  • Asaki Y, Maud LT, Fomalont EB, Phillips NM, Hirota A, Sawada T, Barcos-Muñoz L, Richards AMS, Dent WRF, Takahashi S, Corder S, Carpenter JM, Villard E, Humphreys EM (2020) ALMA high-frequency long baseline campaign in 2017: band-to-band phase referencing in submillimeter waves. Astrophys J Suppl Ser 247(1):23. https://doi.org/10.3847/1538-4365/ab6b20

    Article  ADS  Google Scholar 

  • Baba J, Saitoh TR, Wada K (2013) Dynamics of non-steady spiral arms in disk galaxies. Astrophys J 763:46. https://doi.org/10.1088/0004-637X/763/1/46. arXiv:1211.5401

    Article  ADS  Google Scholar 

  • Baba J, Morokuma-Matsui K, Egusa F (2015) Radial distributions of arm-gas offsets as an observational test of spiral theories. Publ Astron Soc Jpn 67(4):L4. https://doi.org/10.1093/pasj/psv048. arXiv:1505.02881

    Article  ADS  Google Scholar 

  • Barnes DG, Staveley-Smith L, de Blok WJG, Oosterloo T, Stewart IM, Wright AE, Banks GD, Bhathal R, Boyce PJ, Calabretta MR, Disney MJ, Drinkwater MJ, Ekers RD, Freeman KC, Gibson BK, Green AJ, Haynes RF, te Lintel HP, Henning PA, Jerjen H, Juraszek S, Kesteven MJ, Kilborn VA, Knezek PM, Koribalski B, Kraan-Korteweg RC, Malin DF, Marquarding M, Minchin RF, Mould JR, Price RM, Putman ME, Ryder SD, Sadler EM, Schröder A, Stootman F, Webster RL, Wilson WE, Ye T (2001) The HI Parkes All Sky Survey: southern observations, calibration and robust imaging. Mon Not R Astron Soc 322(3):486–498. https://doi.org/10.1046/j.1365-8711.2001.04102.x

    Article  ADS  Google Scholar 

  • Bartel N, Herring TA, Ratner MI, Shapiro II, Corey BE (1986) VLBI limits on the proper motion of the ‘core’ of the superluminal quasar 3C345. Nature 319(6056):733–738. https://doi.org/10.1038/319733a0

    Article  ADS  Google Scholar 

  • Blandford RD, Königl A (1979) Relativistic jets as compact radio sources. Astrophys J 232:34–48. https://doi.org/10.1086/157262

    Article  ADS  Google Scholar 

  • Bonaldi A, Bonato M, Galluzzi V, Harrison I, Massardi M, Kay S, De Zotti G, Brown ML (2019) The Tiered Radio Extragalactic Continuum Simulation (T-RECS). Mon Not R Astron Soc 482(1):2–19. https://doi.org/10.1093/mnras/sty2603. arXiv:1805.05222

    Article  ADS  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Braun R, Bourke T, Green JA, Keane E, Wagg J (2015) Advancing astrophysics with the Square Kilometre Array. In: Advancing astrophysics with the Square Kilometre Array (AASKA14), p 174. https://doi.org/10.22323/1.215.0174

  • Brisken WF (2001) High-precision pulsar astrometry using the VLA and VLBA interferometers. PhD thesis, Princeton University (USA)

  • Brisken WF, Benson JM, Beasley AJ, Fomalont EB, Goss WM, Thorsett SE (2000) Measurement of the parallax of PSR B0950+08 using the VLBA. Astrophys J 541:959–962. https://doi.org/10.1086/309492. arXiv:astro-ph/0005324

    Article  ADS  Google Scholar 

  • Brisken WF, Benson JM, Goss WM, Thorsett SE (2002) Very long baseline array measurement of nine pulsar parallaxes. Astrophys J 571:906–917. https://doi.org/10.1086/340098. arXiv:astro-ph/0204105

    Article  ADS  Google Scholar 

  • Brunthaler A, Reid MJ, Falcke H (2005) Atmosphere-corrected phase-referencing. In: Romney J, Reid M (eds) Future directions in high resolution astronomy, ASP Conference Series, vol 340. Astronomical Society of the Pacific, San Francisco, p 455. arXiv:astro-ph/0309575

  • Brunthaler A, Reid MJ, Falcke H, Henkel C, Menten KM (2007) The proper motion of the Local Group galaxy IC 10. Astron Astrophys 462(1):101–106. https://doi.org/10.1051/0004-6361:20066430. arXiv:astro-ph/0610774

    Article  ADS  Google Scholar 

  • Carilli CL, Holdaway MA (1999) Tropospheric phase calibration in millimeter interferometry. Radio Sci 34:817–840. https://doi.org/10.1029/1999RS900048. arXiv:astro-ph/9904248

    Article  ADS  Google Scholar 

  • Charlot P, Jacobs CS, Gordon D, Lambert S, de Witt A, Böhm J, Fey AL, Heinkelmann R, Skurikhina E, Titov O, Arias EF, Bolotin S, Bourda G, Ma C, Malkin Z, Nothnagel A, Mayer D, MacMillan DS, Nilsson T, Gaume R (2020) Third realization of the international celestial reference frame by very long baseline interferometry

  • Chatterjee S, Cordes JM, Vlemmings WHT, Arzoumanian Z, Goss WM, Lazio TJW (2004) Pulsar parallaxes at 5 GHz with the very long baseline array. Astrophys J 604(1):339–345. https://doi.org/10.1086/381748. arXiv:astro-ph/0312044

    Article  ADS  Google Scholar 

  • Clark B (2015) Next generation VLA memo 10: Considerations for a Water Vapor Radiometer System. Tech. rep., NRAO. http://library.nrao.edu/public/memos/ngvla/NGVLA_10.pdf

  • Condon JJ, Cotton WD, Greisen EW, Yin QF, Perley RA, Taylor GB, Broderick JJ (1998) The NRAO VLA Sky Survey. Astron J 115(5):1693–1716. https://doi.org/10.1086/300337

    Article  ADS  Google Scholar 

  • Counselman ICC (1976) Radio astrometry. Annu Rev Astron Astrophys 14:197–214. https://doi.org/10.1146/annurev.aa.14.090176.001213

    Article  ADS  Google Scholar 

  • Deller AT, Brisken WF, Phillips CJ, Morgan J, Alef W, Cappallo R, Middelberg E, Romney J, Rottmann H, Tingay SJ, Wayth R (2011) DiFX-2: a more flexible, efficient, robust, and powerful software correlator. Publ Astron Soc Pac 123:275–287. https://doi.org/10.1086/658907. arXiv:1101.0885

    Article  ADS  Google Scholar 

  • Deller AT, Goss WM, Brisken WF, Chatterjee S, Cordes JM, Janssen GH, Kovalev YY, Lazio TJW, Petrov L, Stappers BW, Lyne A (2019) Microarcsecond VLBI pulsar astrometry with PSR\(\pi\) II. Parallax distances for 57 pulsars. Astrophys J 875(2):100. https://doi.org/10.3847/1538-4357/ab11c7. arXiv:1808.09046

    Article  ADS  Google Scholar 

  • Dodson R, Rioja M (2018) Investigations on MultiView VLBI for SKA. In: 14th European VLBI network symposium and users meeting, p 086. https://doi.org/10.22323/1.344.0086

  • Dodson R, Rioja M, Asaki Y, Imai H, Hong XY, Shen Z (2013) The application of multiview methods for high-precision astrometric space VLBI at low frequencies. Astron J 145:147. https://doi.org/10.1088/0004-6256/145/6/147. arXiv:1303.3402

    Article  ADS  Google Scholar 

  • Dodson R, Rioja MJ, Jung TH, Sohn BW, Byun DY, Cho SH, Lee SS, Kim J, Kim KT, Oh CS, Han ST, Je DH, Chung MH, Wi SO, Kang J, Lee JW, Chung H, Kim HR, Kim HG, Lee CH, Roh DG, Oh SJ, Yeom JH, Song MG, Kang YW (2014) Astrometrically registered simultaneous observations of the 22 GHz H2O and 43 GHz SiO masers toward R leonis minoris using KVN and source/frequency phase referencing. Astron J 148:97. https://doi.org/10.1088/0004-6256/148/5/97. arXiv:1408.3513

    Article  ADS  Google Scholar 

  • Dodson R, Rioja MJ, Jung T, Goméz JL, Bujarrabal V, Moscadelli L, Miller-Jones JCA, Tetarenko AJ, Sivakoff GR (2017) The science case for simultaneous mm-wavelength receivers in radio astronomy. New A Rev 79:85–102. https://doi.org/10.1016/j.newar.2017.09.003. arXiv:1709.07167

    Article  ADS  Google Scholar 

  • Dodson R, Rioja MJ, Molina SN, Gómez JL (2017b) High-precision astrometric millimeter very long baseline interferometry using a new method for multi-frequency calibration. Astrophys J 834(2):177. https://doi.org/10.3847/1538-4357/834/2/177. arXiv:1612.02958

    Article  ADS  Google Scholar 

  • Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009) Imaging an event horizon: submm-VLBI of a super massive black hole. In: Astro2010: the astronomy and astrophysics decadal survey, vol 2010. arXiv:0906.3899

  • Doi A, Fujisawa K, Habe A, Honma M, Kawaguchi N, Kobayashi H, Murata Y, Omodaka T, Sudou H, Takaba H (2006) Bigradient phase referencing. Publ Astron Soc Jpn 58:777–785. https://doi.org/10.1093/pasj/58.4.777. arXiv:astro-ph/0604596

    Article  ADS  Google Scholar 

  • Doi A, Kono Y, Kimura K, Nakahara S, Oyama T, Okada N, Satou Y, Yamashita K, Matsumoto N, Baba M, Yasuda D, Suzuki S, Hasegawa Y, Honma M, Tanaka H, Ishimura K, Murata Y, Shimomukai R, Tachi T, Saito K, Watanabe N, Bando N, Kameya O, Yonekura Y, Sekido M, Inoue Y, Sakamoto H, Kogiso N, Shoji Y, Ogawa H, Fujisawa K, Narita M, Shibai H, Fuke H, Uehara K, Koyama S (2019) A balloon-borne very long baseline interferometry experiment in the stratosphere: Systems design and developments. Adv Space Res 63(1):779–793. https://doi.org/10.1016/j.asr.2018.09.020

  • Dunning A, Bowen M, Bourne M, Hayman D, Smith SL (2015) An ultra-wideband dielectrically loaded quad-ridged feed horn for radio astronomy. In: 2015 IEEE-APS topical conference on antennas and propagation in wireless communications (APWC), pp 787–790. https://doi.org/10.1109/APWC.2015.7300180

  • Dunning A, Bowen MA, Hayman DB, Kanapathippillai J, Kanoniuk H, Shaw RD, Severs S (2016) The development of a wideband ‘rocket’ phased array feed. In: 2016 46th European microwave conference (EuMC), pp 1568–1571

  • Event Horizon Telescope Collaboration (2019) First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J Lett 875(1):L1. https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238

  • Fisher JR, Bradley RF (2000) Full-sampling array feeds for radio telescopes. In: Butcher HR (ed) PROCSPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 4015, pp 308–318. https://doi.org/10.1117/12.390425

  • Flygare J, Pantaleev M (2019) Dielectrically loaded quad-ridge flared horn for beamwidth control over decade bandwidth -optimization, manufacture, and measurement. IEEE. https://doi.org/10.1109/TAP.2019.2940529

  • Fomalont E, Kogan L (2005) ATMCA: phase referencing using more than one calibrator: AIPS Memo 111. Tech. rep., NRAO

  • Fomalont EB, Kopeikin S (2002) Phase referencing using several calibrator sources. In: Ros E, Porcas RW, Lobanov AP, Zensus JA (eds) Proceedings of the 6th EVN symposium, p 53

  • Fomalont EB, Goss WM, Beasley AJ, Chatterjee S (1999) Sub-milliarcsecond precision of pulsar motions: using in-beam calibrators with the VLBA. Astron J 117:3025–3030. https://doi.org/10.1086/300877. arXiv:astro-ph/9903042

    Article  ADS  Google Scholar 

  • Fomalont E, Johnston K, Fey A, Boboltz D, Oyama T, Honma M (2011) The position/structure stability of four ICRF2 sources. Astron J 141:91. https://doi.org/10.1088/0004-6256/141/3/91. arXiv:1012.2804

    Article  ADS  Google Scholar 

  • Forbrich J, Dzib S, Reid M, Menten K (2020) A VLBA survey of radio stars in the Orion Nebula Cluster: I. The nonthermal radio population. Astrophys J

  • Frouard J, Johnson MC, Fey A, Makarov VV, Dorland BN (2018) Toward the ICRF3: astrometric comparison of the USNO 2016A VLBI solution with ICRF2 and Gaia DR1. Astron J 155(6):229. https://doi.org/10.3847/1538-3881/aabafa. arXiv:1804.10240

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Brown AGA, Vallenari A, Prusti T, de Bruijne JHJ, Babusiaux C, Bailer-Jones CAL, Biermann M, Evans DW, Eyer L et al (2018a) Gaia Data Release 2. Summary of the contents and survey properties. Astron Astrophys 616:A1. https://doi.org/10.1051/0004-6361/201833051. arXiv:1804.09365

  • Gaia Collaboration, Katz D, Antoja T, Romero-Gómez M, Drimmel R, Reylé C, Seabroke GM, Soubiran C, Babusiaux C, Di Matteo P et al (2018b) Gaia Data Release 2. Mapping the Milky Way disc kinematics. Astron Astrophys 616:A11. https://doi.org/10.1051/0004-6361/201832865. arXiv:1804.09380

  • Gaia Collaboration, Mignard F, Klioner SA, Lindegren L, Hernández J, Bastian U, Bombrun A, Hobbs D, Lammers U, Michalik D et al (2018c) Gaia Data Release 2. The celestial reference frame (Gaia-CRF2). Astron Astrophys 616:A14. https://doi.org/10.1051/0004-6361/201832916

    Article  Google Scholar 

  • Garcia Miro C (2019) WP10: VLBI with the SKA. Tech. rep., JIVE

  • Greisen EW (2003) AIPS, the VLA, and the VLBA. Information handling in astronomy—historical vistas, vol 285, p 109. https://doi.org/10.1007/0-306-48080-8_7

  • Griv E, Jiang IG, Hou LG, Ngeow CC (2017) The nearby spiral density-wave structure of the Galaxy: line-of-sight and longitudinal velocities of 61 masers. Astron Nachr 338:729–739. https://doi.org/10.1002/asna.201713150

    Article  ADS  Google Scholar 

  • Guirado JC, Marcaide JM, Elosegui P, Ratner MI, Shapiro II, Eckart A, Quirrenbach A, Schalinski CJ, Witzel A (1995) VLBI differential astrometry of the radio sources 1928+738 and 2007+777 at 5 GHz. Astron Astrophys 293:613–625

    ADS  Google Scholar 

  • Guirado JC, Marcaide JM, Pérez-Torres MA, Ros E (2000) VLBI difference astrometry at 43 GHz. Astron Astrophys 353:L37–L40. arXiv:astro-ph/0002072

    ADS  Google Scholar 

  • Guirado JC, Ros E, Jones DL, Lestrade JF, Marcaide JM, Pérez-Torres MA, Preston RA (2001) Space-VLBI phase-reference mapping and astrometry. Astron Astrophys 371:766–770. https://doi.org/10.1051/0004-6361:20010370. arXiv:astro-ph/0104365

    Article  ADS  Google Scholar 

  • Hachisuka K, Choi YK, Reid MJ, Brunthaler A, Menten KM, Sanna A, Dame TM (2015) Parallaxes of star-forming regions in the outer spiral arm of the Milky Way. Astrophys J 800:2. https://doi.org/10.1088/0004-637X/800/1/2. arXiv:1412.7916

    Article  ADS  Google Scholar 

  • Hada K, Doi A, Kino M, Nagai H, Hagiwara Y, Kawaguchi N (2011) An origin of the radio jet in M87 at the location of the central black hole. Nature 477(7363):185–187. https://doi.org/10.1038/nature10387

    Article  ADS  Google Scholar 

  • Han ST, Lee JW, Kang J, Je DH, Chung MH, Wi SO, Sasao T, Wylde R (2008) Millimeter-wave receiver optics for Korean VLBI network. Int J Infrared Millim Waves 29:69–78. https://doi.org/10.1007/s10762-007-9296-7

    Article  ADS  Google Scholar 

  • Han ST, Lee JW, Kang J, Oh CS, Byun DY, Je DH, Chung MH, Wi SO, Song M, Kang YW, Lee SS, Kim SY, Sasao T, Goldsmith PF, Wylde R (2013) Korean VLBI network receiver optics for simultaneous multifrequency observation: evaluation. Publ Astron Soc Pac 125:539. https://doi.org/10.1086/671125

    Article  ADS  Google Scholar 

  • Han ST, Lee JW, Lee B, Chung MH, Lee SM, Je DH, Wi SO, Goldsmith PF (2017) A millimeter-wave quasi-optical circuit for compact triple-band receiving system. J Infrared Milli Terahz Waves 38:1487–1501. https://doi.org/10.1007/s10762-017-0438-2

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275. https://doi.org/10.1007/s00190-008-0266-1

    Article  ADS  Google Scholar 

  • Hobbs G, Manchester RN, Dunning A, Jameson A, Roberts P, George D, Green JA, Tuthill J, Toomey L, Kaczmarek JF, Mader S, Marquarding M, Ahmed A, Amy SW, Bailes M, Beresford R, Bhat NDR, Bock DCJ, Bourne M, Bowen M, Brothers M, Cameron AD, Carretti E, Carter N, Castillo S, Chekkala R, Cheng W, Chung Y, Craig DA, Dai S, Dawson J, Dempsey J, Doherty P, Dong B, Edwards P, Ergesh T, Gao X, Han J, Hayman D, Indermuehle B, Jeganathan K, Johnston S, Kanoniuk H, Kesteven M, Kramer M, Leach M, Mcintyre V, Moss V, Osłowski S, Phillips C, Pope N, Preisig B, Price D, Reeves K, Reilly L, Reynolds J, Robishaw T, Roush P, Ruckley T, Sadler E, Sarkissian J, Severs S, Shannon R, Smart K, Smith M, Smith S, Sobey C, Staveley-Smith L, Tzioumis A, van Straten W, Wang N, Wen L, Whiting M (2020) An ultra-wide bandwidth (704 to 4 032 MHz) receiver for the Parkes radio telescope. Publ Astron Soc Aust 37:e012. https://doi.org/10.1017/pasa.2020.2. arXiv:1911.00656

    Article  ADS  Google Scholar 

  • Hodgson JA, Rani B, Lee SS, Algaba JC, Kino M, Trippe S, Park JH, Zhao GY, Byun DY, Kang S, Kim JY, Kim JS, Kim SW, Miyazaki A, Wajima K, Oh J, Kim DW, Gurwell M (2018) KVN observations reveal multiple \(\gamma\)-ray emission regions in 3C 84? Mon Not R Astron Soc 475(1):368–378. https://doi.org/10.1093/mnras/stx3041. arXiv:1802.02763

    Article  ADS  Google Scholar 

  • Honma M, Tamura Y, Reid MJ (2008) Tropospheric delay calibrations for VERA. Publ Astron Soc Jpn 60:951–960. https://doi.org/10.1093/pasj/60.5.951

    Article  ADS  Google Scholar 

  • Honma M, Nagayama T, Sakai N (2015) Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry. Publ Astron Soc Jpn 67(4):70. https://doi.org/10.1093/pasj/psv045

    Article  ADS  Google Scholar 

  • Hyland L (2020) SPIRALS: Southern Hemisphere Parallax Interferometric Radio Astrometry Legacy Survey. PhD thesis, University of Tasmania

  • Jackson N, Tagore A, Deller A, Moldón J, Varenius E, Morabito L, Wucknitz O, Carozzi T, Conway J, Drabent A, Kapinska A, Orrù E, Brentjens M, Blaauw R, Kuper G, Sluman J, Schaap J, Vermaas N, Iacobelli M, Cerrigone L, Shulevski A, ter Veen S, Fallows R, Pizzo R, Sipior M, Anderson J, Avruch IM, Bell ME, van Bemmel I, Bentum MJ, Best P, Bonafede A, Breitling F, Broderick JW, Brouw WN, Brüggen M, Ciardi B, Corstanje A, de Gasperin F, de Geus E, Eislöffel J, Engels D, Falcke H, Garrett MA, Grießmeier JM, Gunst AW, van Haarlem MP, Heald G, Hoeft M, Hörandel J, Horneffer A, Intema H, Juette E, Kuniyoshi M, van Leeuwen J, Loose GM, Maat P, McFadden R, McKay-Bukowski D, McKean JP, Mulcahy DD, Munk H, Pandey-Pommier M, Polatidis AG, Reich W, Röttgering HJA, Rowlinson A, Scaife AMM, Schwarz DJ, Steinmetz M, Swinbank J, Thoudam S, Toribio MC, Vermeulen R, Vocks C, van Weeren RJ, Wise MW, Yatawatta S, Zarka P (2016) LBCS: the LOFAR long-baseline calibrator survey. Astron Astrophys 595:A86. https://doi.org/10.1051/0004-6361/201629016. arXiv:1608.02133

    Article  Google Scholar 

  • Jiménez-Monferrer S, Rioja MJ, Dodson R, Smirnov O, Guirado JC (2010) Multi-beam capabilities for high precision astrometry at low frequencies using VLBI. In: 10th European VLBI network symposium and EVN users meeting: VLBI and the new generation of radio arrays, Proceedings of science, vol 125, SISSA, p 084. https://doi.org/10.22323/1.125.0084

  • Keith MJ, Jameson A, van Straten W, Bailes M, Johnston S, Kramer M, Possenti A, Bates SD, Bhat NDR, Burgay M, Burke-Spolaor S, D’Amico N, Levin L, McMahon PL, Milia S, Stappers BW (2010) The high time resolution universe pulsar survey—I. System configuration and initial discoveries. Mon Not R Astron Soc 409(2):619–627. https://doi.org/10.1111/j.1365-2966.2010.17325.x

    Article  ADS  Google Scholar 

  • Kim DJ, Cho SH, Yun Y, Choi YK, Yoon DH, Kim J, Dodson R, Rioja MJ, Yang H, Yoon SJ (2018) Simultaneous VLBI astrometry of H2O and SiO masers toward the semiregular variable R Crateris. Astrophys J Lett 866:L19. https://doi.org/10.3847/2041-8213/aae58b. arXiv:1810.07739

    Article  ADS  Google Scholar 

  • Kirsten F, Vlemmings W, Campbell RM, Kramer M, Chatterjee S (2015) Revisiting the birth locations of pulsars B1929+10, B2020+28, and B2021+51. Astron Astrophys 577:A111. https://doi.org/10.1051/0004-6361/201425562. arXiv:1503.09061

    Article  ADS  Google Scholar 

  • Kounkel M, Covey K, Suárez G, Román-Zúñiga C, Hernandez J, Stassun K, Jaehnig KO, Feigelson ED, Peña Ramírez K, Roman-Lopes A, Da Rio N, Stringfellow GS, Kim JS, Borissova J, Fernández-Trincado JG, Burgasser A, García-Hernández DA, Zamora O, Pan K, Nitschelm C (2018) The APOGEE-2 Survey of the Orion star-forming complex. II. Six-dimensional structure. Astron J 156:84. https://doi.org/10.3847/1538-3881/aad1f1. arXiv:1805.04649

    Article  ADS  Google Scholar 

  • Kovalev YY, Petrov L, Plavin AV (2017) VLBI-Gaia offsets favor parsec-scale jet direction in active galactic nuclei. Astron Astrophys 598:L1. https://doi.org/10.1051/0004-6361/201630031. arXiv:1611.02632

    Article  ADS  Google Scholar 

  • Kramer M, Stairs IH, Manchester RN, McLaughlin MA, Lyne AG, Ferdman RD, Burgay M, Lorimer DR, Possenti A, D’Amico N et al (2006) Tests of general relativity from timing the double pulsar. Science 314(5796):97–102. https://doi.org/10.1126/science.1132305

    Article  ADS  Google Scholar 

  • Krishnan V, Ellingsen SP, Reid MJ, Brunthaler A, Sanna A, McCallum J, Reynolds C, Bignall HE, Phillips CJ, Dodson R, Rioja M, Caswell JL, Chen X, Dawson JR, Fujisawa K, Goedhart S, Green JA, Hachisuka K, Honma M, Menten K, Shen ZQ, Voronkov MA, Walsh AJ, Xu Y, Zhang B, Zheng XW (2015) First parallax measurements towards a 6.7 GHz methanol maser with the Australian long baseline array—distance to G 339.884–1.259. Astrophys J 805(2):129. https://doi.org/10.1088/0004-637X/805/2/129. arXiv:1503.05917

    Article  ADS  Google Scholar 

  • Krishnan V, Ellingsen SP, Reid MJ, Bignall HE, McCallum J, Phillips CJ, Reynolds C, Stevens J (2017) Parallaxes of 6.7-GHz methanol masers towards the G 305.2 high-mass star formation region. Mon Not R Astron Soc 465(1):1095–1105. https://doi.org/10.1093/mnras/stw2850. arXiv:1611.00930

    Article  ADS  Google Scholar 

  • Lara L, Marcaide JM, Alberdi A, Guirado JC (1996) VLBI differential astrometry at large angular separation: 3C 395–3C 382. Astron Astrophys 314:672–678

    ADS  Google Scholar 

  • Lee SS, Lobanov AP, Krichbaum TP, Witzel A, Zensus A, Bremer M, Greve A, Grewing M (2008) A global 86 GHz VLBI survey of compact radio sources. Astron J 136:159–180. https://doi.org/10.1088/0004-6256/136/1/159. arXiv:0803.4035

    Article  ADS  Google Scholar 

  • Lee SS, Petrov L, Byun DY, Kim J, Jung T, Song MG, Oh CS, Roh DG, Je DH, Wi SO, Sohn BW, Oh SJ, Kim KT, Yeom JH, Chung MH, Kang J, Han ST, Lee JW, Kim BG, Chung H, Kim HG, Ryoung Kim H, Kang YW, Cho SH (2014) Early science with the Korean VLBI network: evaluation of system performance. Astron J 147:77. https://doi.org/10.1088/0004-6256/147/4/77

    Article  ADS  Google Scholar 

  • Lee SS, Wajima K, Algaba JC, Zhao GY, Hodgson JA, Kim DW, Park J, Kim JY, Miyazaki A, Byun DY, Kang S, Kim JS, Kim SW, Kino M, Trippe S (2016) Interferometric monitoring of gamma-ray bright AGNs. I. The results of single-epoch multifrequency observations. Astrophys J Suppl 227(1):8. https://doi.org/10.3847/0067-0049/227/1/8. arXiv:1610.09121

    Article  ADS  Google Scholar 

  • Lestrade JF, Rogers AEE, Whitney AR, Niell AE, Phillips RB, Preston RA (1990) Phase-reference VLBI observations of weak radio sources. Milliarcsecond position of Algol. Astron J 99:1663. https://doi.org/10.1086/115447

    Article  ADS  Google Scholar 

  • Li D, Pan Z (2016) The Five-hundred-meter Aperture Spherical Radio Telescope Project. Radio Sci 51:1060–1064. https://doi.org/10.1002/2015RS005877. arXiv:1612.09372d

    Article  ADS  Google Scholar 

  • Lin CC, Shu FH (1964) On the spiral structure of disk galaxies. Astrophys J 140:646. https://doi.org/10.1086/147955

    Article  ADS  MathSciNet  Google Scholar 

  • Lindegren L (2020) The Gaia reference frame for bright sources examined using VLBI observations of radio stars. Astron Astrophys 633:A1. https://doi.org/10.1051/0004-6361/201936161. arXiv:1906.09827

    Article  ADS  Google Scholar 

  • Lindegren L, Hernández J, Bombrun A, Klioner S, Bastian U, Ramos-Lerate M, de Torres A, Steidelmüller H, Stephenson C, Hobbs D, Lammers U, Biermann M, Geyer R, Hilger T, Michalik D, Stampa U, McMillan PJ, Castañeda J, Clotet M, Comoretto G, Davidson M, Fabricius C, Gracia G, Hambly NC, Hutton A, Mora A, Portell J, van Leeuwen F, Abbas U, Abreu A, Altmann M, Andrei A, Anglada E, Balaguer-Núñez L, Barache C, Becciani U, Bertone S, Bianchi L, Bouquillon S, Bourda G, Brüsemeister T, Bucciarelli B, Busonero D, Buzzi R, Cancelliere R, Carlucci T, Charlot P, Cheek N, Crosta M, Crowley C, de Bruijne J, de Felice F, Drimmel R, Esquej P, Fienga A, Fraile E, Gai M, Garralda N, González-Vidal JJ, Guerra R, Hauser M, Hofmann W, Holl B, Jordan S, Lattanzi MG, Lenhardt H, Liao S, Licata E, Lister T, Löffler W, Marchant J, Martin-Fleitas JM, Messineo R, Mignard F, Morbidelli R, Poggio E, Riva A, Rowell N, Salguero E, Sarasso M, Sciacca E, Siddiqui H, Smart RL, Spagna A, Steele I, Taris F, Torra J, van Elteren A, van Reeven W, Vecchiato A (2018) Gaia Data Release 2. The astrometric solution. Astron Astrophys 616:A2. https://doi.org/10.1051/0004-6361/201832727. arXiv:1804.09366

    Article  Google Scholar 

  • Makarov VV, Berghea CT, Frouard J, Fey A, Schmitt HR (2019) The precious set of radio-optical reference frame objects in the light of Gaia DR2 data. Astrophys J 873(2):132. https://doi.org/10.3847/1538-4357/aafa1c. arXiv:1811.10117

    Article  ADS  Google Scholar 

  • Marcaide JM, Shapiro II (1984) VLBI study of 1038+528A and B: discovery of wavelength dependence of peak brightness location. Astrophys J 276:56–59. https://doi.org/10.1086/161592

    Article  ADS  Google Scholar 

  • Martí-Vidal I, Marcaide JM, Guirado JC, Pérez-Torres MA, Ros E (2008) Absolute kinematics of radio source components in the complete S5 polar cap sample. III. First wide-field high-precision astrometry at 15.4 GHz. Astron Astrophys 478(1):267–275. https://doi.org/10.1051/0004-6361:20078067. arXiv:0711.1959

    Article  ADS  Google Scholar 

  • Martí-Vidal I, Abellán FJ, Marcaide JM, Guirado JC, Pérez-Torres MA, Ros E (2016) Absolute kinematics of radio-source components in the complete S5 polar cap sample. IV. Proper motions of the radio cores over a decade and spectral properties. Astron Astrophys 596:A27. https://doi.org/10.1051/0004-6361/201628149. arXiv:1607.05089

    Article  ADS  Google Scholar 

  • Melis C (2018) VLBI Astrometry. https://osf.io/byrcf

  • Melis C, Reid MJ, Mioduszewski AJ, Stauffer JR, Bower GC (2014) A VLBI resolution of the Pleiades distance controversy. Science 345(6200):1029–1032. https://doi.org/10.1126/science.1256101. arXiv:1408.6544

    Article  ADS  Google Scholar 

  • Middelberg E, Roy AL, Walker RC, Falcke H (2005) VLBI observations of weak sources using fast frequency switching. Astron Astrophys 433:897–909. https://doi.org/10.1051/0004-6361:20042078. arXiv:astro-ph/0412564

    Article  ADS  Google Scholar 

  • Miller-Jones JCA et al (2020) Inefficient stellar winds from a massive black hole progenitor in Cygnus X-1. Science

  • Mitchell DA, Greenhill LJ, Wayth RB, Sault RJ, Lonsdale CJ, Cappallo RJ, Morales MF, Ord SM (2008) Real-time calibration of the Murchison widefield array. IEEE J Select Top Signal Proc 2:707–717. https://doi.org/10.1109/JSTSP.2008.2005327

    Article  ADS  Google Scholar 

  • Moldón J, Deller AT, Wucknitz O, Jackson N, Drabent A, Carozzi T, Conway J, Kapińska AD, McKean JP, Morabito L, Varenius E, Zarka P, Anderson J, Asgekar A, Avruch IM, Bell ME, Bentum MJ, Bernardi G, Best P, Bîrzan L, Bregman J, Breitling F, Broderick JW, Brüggen M, Butcher HR, Carbone D, Ciardi B, de Gasperin F, de Geus E, Duscha S, Eislöffel J, Engels D, Falcke H, Fallows RA, Fender R, Ferrari C, Frieswijk W, Garrett MA, Grießmeier J, Gunst AW, Hamaker JP, Hassall TE, Heald G, Hoeft M, Juette E, Karastergiou A, Kondratiev VI, Kramer M, Kuniyoshi M, Kuper G, Maat P, Mann G, Markoff S, McFadden R, McKay-Bukowski D, Morganti R, Munk H, Norden MJ, Offringa AR, Orru E, Paas H, Pandey-Pommier M, Pizzo R, Polatidis AG, Reich W, Röttgering H, Rowlinson A, Scaife AMM, Schwarz D, Sluman J, Smirnov O, Stappers BW, Steinmetz M, Tagger M, Tang Y, Tasse C, Thoudam S, Toribio MC, Vermeulen R, Vocks C, van Weeren RJ, White S, Wise MW, Yatawatta S, Zensus A (2015) The LOFAR long baseline snapshot calibrator survey. Astron Astrophys 574:A73. https://doi.org/10.1051/0004-6361/201425042. arXiv:1411.2743

    Article  Google Scholar 

  • Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561(7723):355–359. https://doi.org/10.1038/s41586-018-0486-3. arXiv:1806.09693

    Article  ADS  Google Scholar 

  • Moscadelli L, Sánchez-Monge Á, Goddi C, Li JJ, Sanna A, Cesaroni R, Pestalozzi M, Molinari S, Reid MJ (2016) Outflow structure within 1000 AU of high-mass YSOs. I. First results from a combined study of maser and radio continuum emission. Astron Astrophys 585:A71. https://doi.org/10.1051/0004-6361/201526238

    Article  ADS  Google Scholar 

  • Moscadelli L, Sanna A, Goddi C, Krishnan V, Massi F, Bacciotti F (2019) Protostellar Outflows at the EarliesT Stages (POETS). III. \(\text{ H}_{2}\text{O}\) masers tracing disk-winds and jets near luminous YSOs. Astron Astrophys 631:A74. arXiv:1909.08374

    Article  ADS  Google Scholar 

  • Moscadelli L, Sanna A, Goddi C, Krishnan V, Massi F, Bacciotti F (2020) Protostellar Outflows at the EarliesT Stages (POETS) IV statistical properties of the 22 GHz H2O masers. Astron Astrophys 635:A118. https://doi.org/10.1051/0004-6361/202037472. arXiv:2002.06871

    Article  ADS  Google Scholar 

  • Murphy E (ed) (2018) Science with a next generation Very Large Array, ASP Conference Series, vol 517. Astronomical Society of the Pacific, San Francisco

  • Murphy EJ, Bolatto A, Chatterjee S, Casey CM, Chomiuk L, Dale D, de Pater I, Dickinson M, Francesco JD, Hallinan G, Isella A, Kohno K, Kulkarni SR, Lang C, Lazio TJW, Leroy AK, Loinard L, Maccarone TJ, Matthews BC, Osten RA, Reid MJ, Riechers D, Sakai N, Walter F, Wilner D (2018) The ngVLA science case and associated science requirements. In: Murphy E (ed) Science with a next generation Very Large Array, ASP Conference Series, vol 517. Astronomical Society of the Pacific, San Francisco, p 3

  • Nagayama T, Omodaka T, Handa T, Honma M, Kobayashi H, Kawaguchi N, Ueno Y (2011) Astrometry of galactic star-forming region G48.61+0.02 with VERA. Publ Astron Soc Jpn 63(4):719–725. https://doi.org/10.1093/pasj/63.4.719

    Article  ADS  Google Scholar 

  • Nagayama T, Hirota T, Honma M, Kurayama T, Adachi Y, Tamura Y, Kanya Y (2020) VEDA: VERA data analysis software for VLBI phase-referencing astrometry. Publ Astron Soc Jpn, psaa044. https://doi.org/10.1093/pasj/psaa044

  • Nair DG, Lobanov AP, Krichbaum TP, Ros E, Zensus JA, Kovalev YY, Lee SS, Mertens F, Hagiwara Y, Bremer M, Lindqvist M, de Vicente P (2019) Global millimeter VLBI array survey of ultracompact extragalactic radio sources at 86 GHz. Astron Astrophys 622:A92. https://doi.org/10.1051/0004-6361/201833122. arXiv:1808.09243

    Article  Google Scholar 

  • Nakagawa A, Kurayama T, Matsui M, Omodaka T, Honma M, Shibata KM, Sato K, Jike T (2016) Parallax of a Mira variable R Ursae Majoris studied with astrometric VLBI. Publ Astron Soc Jpn 68(5):78. https://doi.org/10.1093/pasj/psw069

    Article  ADS  Google Scholar 

  • Nakagawa A, Kurayama T, Orosz G, Burns RA, Oyama T, Nagayama T, Miyata T, Sekido M, Baba J, Wada K (2018) Astrometric VLBI observations of the galactic LPVs, Miras, and OH/IR stars. In: Tarchi A, Reid MJ, Castangia P (eds) Astrophysical masers: unlocking the mysteries of the universe, IAU symposium, vol 336, pp 365–368. https://doi.org/10.1017/S1743921317009449

  • Niell A, Barrett J, Burns A, Cappallo R, Corey B, Derome M, Eckert C, Elosegui P, McWhirter R, Poirier M, Rajagopalan G, Rogers A, Ruszczyk C, SooHoo J, Titus M, Whitney A, Behrend D, Bolotin S, Gipson J, Gordon D, Himwich E, Petrachenko B (2018) Demonstration of a broadband very long baseline interferometer system: a new instrument for high-precision space geodesy. Radio Sci 53(10):1269–1291. https://doi.org/10.1029/2018RS006617

    Article  ADS  Google Scholar 

  • Niinuma K, Kino M, Doi A, Hada K, Nagai H, Koyama S (2015) Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421. Astrophys J Lett 807(1):L14. https://doi.org/10.1088/2041-8205/807/1/L14. arXiv:1507.04082

    Article  ADS  Google Scholar 

  • Orosz G, Imai H, Dodson R, Rioja MJ, Frey S, Burns RA, Etoka S, Nakagawa A, Nakanishi H, Asaki Y, Goldman SR, Tafoya D (2017) Astrometry of OH/IR stars using 1612 MHz hydroxyl masers. I. Annual parallaxes of WX Psc and OH138.0+7.2. Astron J 153(3):119. https://doi.org/10.3847/1538-3881/153/3/119. arXiv:1701.05101

    Article  ADS  Google Scholar 

  • Ortiz-León GN, Loinard L, Dzib SA, Kounkel M, Galli PAB, Tobin JJ, Neal Evans I, J, Hartmann L, Rodríguez LF, Briceño C, Torres RM, Mioduszewski AJ, (2018) Gaia-DR2 Confirms VLBA Parallaxes in Ophiuchus, Serpens, and Aquila. Astrophys J Lett 869(2):L33. https://doi.org/10.3847/2041-8213/aaf6ad. arXiv:1812.02360

  • Paragi Z, Godfrey L, Reynolds C, Rioja MJ, Deller A, Zhang B, Gurvits L, Bietenholz M, Szomoru A, Bignall HE, Boven P, Charlot P, Dodson R, Frey S, Garrett MA, Imai H, Lobanov A, Reid MJ, Ros E, van Langevelde HJ, Zensus AJ, Zheng XW, Alberdi A, Agudo I, An T, Argo M, Beswick R, Biggs A, Brunthaler A, Campbell B, Cimo G, Colomer F, Corbel S, Conway JE, Cseh D, Deane R, Falcke HDE, Gawronski M, Gaylard M, Giovannini G, Giroletti M, Goddi C, Goedhart S, Gómez JL, Gunn A, Kharb P, Kloeckner HR, Koerding E, Kovalev Y, Kunert-Bajraszewska M, Lindqvist M, Lister M, Mantovani F, Marti-Vidal I, Mezcua M, McKean J, Middelberg E, Miller-Jones JCA, Moldon J, Muxlow T, O’Brien T, Perez-Torres M, Pogrebenko SV, Quick J, Rushton A, Schilizzi R, Smirnov O, Sohn BW, Surcis G, Taylor GB, Tingay S, Tudose VM, van der Horst A, van Leeuwen J, Venturi T, Vermeulen R, Vlemmings WHT, de Witt A, Wucknitz O, Yang J, Gabänyi K, Jung T (2015) Very long baseline interferometry with the SKA. In: Advancing astrophysics with the Square Kilometre Array (AASKA14), p 143. https://doi.org/10.22323/1.215.0143. arXiv:1412.5971

  • Paragi Z, Chrysostomou A, Garcia-Miro C (2018) SKA-VLBI key science programmes. In: 14th European VLBI network symposium and users meeting (EVN 2018), p 85. https://doi.org/10.22323/1.344.0085

  • Perutz MF (1962) X-ray analysis of haemoglobin: nobel lecture. https://www.nobelprize.org/prizes/chemistry/1962/perutz/lecture

  • Petrov L (2016) VLBA Calibrator Survey 9 (VCS-9). ArXiv e-prints arXiv:1610.04951

  • Petrov L, Kovalev YY, Fomalont EB, Gordon D (2008) The sixth VLBA calibrator survey: VCS6. Astron J 136:580–585. https://doi.org/10.1088/0004-6256/136/2/580. arXiv:0801.3895

    Article  ADS  Google Scholar 

  • Petrov L, de Witt A, Sadler EM, Phillips C, Horiuchi S (2019a) The second LBA calibrator survey of southern compact extragalactic radio sources—LCS2. Mon Not R Astron Soc 485(1):88–101. https://doi.org/10.1093/mnras/stz242. arXiv:1812.02916

    Article  ADS  Google Scholar 

  • Petrov L, Kovalev YY, Plavin AV (2019b) A quantitative analysis of systematic differences in the positions and proper motions of Gaia DR2 with respect to VLBI. Mon Not R Astron Soc 482(3):3023–3031. https://doi.org/10.1093/mnras/sty2807. arXiv:1808.05114

    Article  ADS  Google Scholar 

  • Plavin AV, Kovalev YY, Petrov LY (2019) Dissecting the AGN disk-jet system with joint VLBI-Gaia analysis. Astrophys J 871(2):143. https://doi.org/10.3847/1538-4357/aaf650. arXiv:1808.05115

    Article  ADS  Google Scholar 

  • Porcas RW (2009) Radio astrometry with chromatic AGN core positions. Astron Astrophys 505:L1–L4. https://doi.org/10.1051/0004-6361/200912846. arXiv:0909.0933

    Article  ADS  Google Scholar 

  • Porcas RW, Rioja MJ (2000) Earth-space VLBI of the quasar pair 1038+52A. B. Adv Space Res 26(4):673–676. https://doi.org/10.1016/S0273-1177(99)01188-6

    Article  ADS  Google Scholar 

  • Porcas RW, Rioja MJ (2002) VLBI phase-reference investigations at 86 GHz. In: Ros E, Porcas RW, Lobanov AP, Zensus JA (eds) Proceedings of the 6th EVN symposium, p 65

  • Pradel N, Charlot P, Lestrade JF (2006) Astrometric accuracy of phase-referenced observations with the VLBA and EVN. Astron Astrophys 452:1099–1106. https://doi.org/10.1051/0004-6361:20053021. arXiv:astro-ph/0603015

    Article  ADS  Google Scholar 

  • Radcliffe JF, Garrett MA, Beswick RJ, Muxlow TWB, Barthel PD, Deller AT, Middelberg E (2016) Multi-source self-calibration: unveiling the microJy population of compact radio sources. Astron Astrophys 587:A85. https://doi.org/10.1051/0004-6361/201527980. arXiv:1601.04452

    Article  ADS  Google Scholar 

  • Reid MJ, Honma M (2014) Microarcsecond radio astrometry. Annu Rev Astron Astrophys 52:339–372. https://doi.org/10.1146/annurev-astro-081913-040006. arXiv:1312.2871

    Article  ADS  Google Scholar 

  • Reid MJ, Readhead ACS, Vermeulen RC, Treuhaft RN (1999) The proper motion of Sagittarius A*. I. First VLBA results. Astrophys J 524(2):816–823. https://doi.org/10.1086/307855. arXiv:astro-ph/9905075

    Article  ADS  Google Scholar 

  • Reid MJ, Menten KM, Brunthaler A, Zheng XW, Moscadelli L, Xu Y (2009) Trigonometric parallaxes of massive star-forming regions. I. S 252 and G232.6+1.0. Astrophys J 693(1):397–405. https://doi.org/10.1088/0004-637X/693/1/397. arXiv:0811.0595

    Article  ADS  Google Scholar 

  • Reid MJ, Menten KM, Brunthaler A, Zheng XW, Dame TM, Xu Y, Wu Y, Zhang B, Sanna A, Sato M, Hachisuka K, Choi YK, Immer K, Moscadelli L, Rygl KLJ, Bartkiewicz A (2014) Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way. Astrophys J 783:130. https://doi.org/10.1088/0004-637X/783/2/130. arXiv:1401.5377

    Article  ADS  Google Scholar 

  • Reid MJ, Brunthaler A, Menten KM, Sanna A, Xu Y, Li JJ, Wu Y, Hu B, Zheng XW, Zhang B, Immer K, Rygl K, Moscadelli L, Sakai N, Bartkiewicz A, Choi YK (2017) Techniques for accurate parallax measurements for 6.7 GHz methanol masers. Astron J 154:63. https://doi.org/10.3847/1538-3881/aa7850. arXiv:1706.03128

    Article  ADS  Google Scholar 

  • Reid M, Loinard L, Maccarone T (2018) Astrometry and long baseline science. In: Murphy E (ed) Science with a next generation Very Large Array, ASP Conference Series, vol 517. Astronomical Society of the Pacific, San Francisco, p 523. arXiv:1810.06577

  • Reid MJ, Menten KM, Brunthaler A, Zheng XW, Dame TM, Xu Y, Li J, Sakai N, Wu Y, Immer K, Zhang B, Sanna A, Moscadelli L, Rygl KLJ, Bartkiewicz A, Hu B, Quiroga-Nuñez LH, van Langevelde HJ (2019) Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys J 885(2):131. https://doi.org/10.3847/1538-4357/ab4a11

    Article  ADS  Google Scholar 

  • Rioja MJ (1993) Astrometría diferencial de precisión comparada del par de radio-fuentes 1038+528 A y B”. PhD thesis, University of Granada

  • Rioja M, Dodson R (2011) High-precision astrometric millimeter very long baseline interferometry using a new method for atmospheric calibration. Astron J 141:114. https://doi.org/10.1088/0004-6256/141/4/114. arXiv:1101.2051

    Article  ADS  Google Scholar 

  • Rioja MJ, Porcas RW (2000) A phase-reference study of the quasar pair 1038+528A, B. Astron Astrophys 355:552–563. arXiv:astro-ph/0002097

    ADS  Google Scholar 

  • Rioja MJ, Marcaide JM, Elosegui P, Shapiro II (1997a) Results from a decade-long VLBI astrometric monitoring of the pair of quasars 1038+528 A and B. Astron Astrophys 325:383–390

    ADS  Google Scholar 

  • Rioja MJ, Stevens E, Gurvits L, Alef W, Schilizzi RT, Sasao T, Asaki Y (1997b) Phase-referencing in “cluster-cluster” VLBI mode. Vistas Astron 41:213–217. https://doi.org/10.1016/S0083-6656(97)00008-1

    Article  ADS  Google Scholar 

  • Rioja MJ, Porcas RW, Desmurs JF, Alef W, Gurvits LI, Schilizzi RT (2002) VLBI observations in cluster-cluster mode at 1.6 GHz. In: Ros E, Porcas RW, Lobanov AP, Zensus JA (eds) Proceedings of the 6th EVN symposium, p 57. arXiv:astro-ph/0207210

  • Rioja MJ, Dodson R, Kamohara R, Colomer F, Bujarrabal V, Kobayashi H (2008) Relative astrometry of the \(J = 1 \rightarrow 0\), \(v = 1\) and \(v = 2\) SiO masers toward R leonis minoris using VERA. Publ Astron Soc Jpn 60:1031–1038. https://doi.org/10.1093/pasj/60.5.1031. arXiv:0811.3820

    Article  ADS  Google Scholar 

  • Rioja M, Dodson R, Malarecki J, Asaki Y (2011a) Exploration of source frequency phase referencing techniques for astrometry and observations of weak sources with high frequency space very long baseline interferometry. Astron J 142:157. https://doi.org/10.1088/0004-6256/142/5/157. arXiv:1110.0267

    Article  ADS  Google Scholar 

  • Rioja M, Dodson R, Reynolds J (2011b) Demonstration of MultiBeam to PAF VLBI correlation for ASKAP. Tech. rep., University of Western Australia, Australia

  • Rioja MJ, Dodson R, Jung T, Sohn BW, Byun DY, Agudo I, Cho SH, Lee SS, Kim J, Kim KT, Oh CS, Han ST, Je DH, Chung MH, Wi SO, Kang J, Lee JW, Chung H, Ryoung Kim H, Kim HG, Lee CH, Roh DG, Oh SJ, Yeom JH, Song MG, Kang YW (2014) Verification of the astrometric performance of the Korean VLBI network, using comparative SFPR studies with the VLBA at 14/7 mm. Astron J 148:84. https://doi.org/10.1088/0004-6256/148/5/84. arXiv:1407.4604

    Article  ADS  Google Scholar 

  • Rioja MJ, Dodson R, Jung T, Sohn BW (2015) The power of simultaneous multi-frequency observations for mm-VLBI: astrometry up to 130 GHz with the KVN. Astron J 150:202. https://doi.org/10.1088/0004-6256/150/6/202

    Article  ADS  Google Scholar 

  • Rioja MJ, Dodson R, Orosz G, Imai H, Frey S (2017) MultiView high precision VLBI astrometry at low frequencies. Astron J 153:105. https://doi.org/10.3847/1538-3881/153/3/105. arXiv:1612.02554

    Article  ADS  Google Scholar 

  • Rioja MJ, Dodson R, Franzen TMO (2018) LEAP: an innovative direction-dependent ionospheric calibration scheme for low-frequency arrays. Mon Not R Astron Soc 478:2337–2349. https://doi.org/10.1093/mnras/sty1195. arXiv:1807.04685

    Article  ADS  Google Scholar 

  • Robertson DS (1975) Geodetic and astrometric measurements with very long baseline interferometry. PhD thesis, MIT

  • Ros E, Marcaide JM, Guirado JC, Ratner MI, Shapiro II, Krichbaum TP, Witzel A, Preston RA (1999) High precision difference astrometry applied to the triplet of S5 radio sources B1803+784/Q1928+738/B2007+777. Astron Astrophys 348:381–393. arXiv:astro-ph/9905265

    ADS  Google Scholar 

  • Roy A, Rottmann H, Teuber U, Keller R (2006) Phase correction of VLBI with water vapour radiometry. In: Proceedings of the 8th European VLBI network symposium, p 58

  • Rygl K, Wu Y, Reid MJ, Brunthaler A, Menten K (2018) Astrometry of star-forming regions in the Sagittarius spiral arms. In: 14th European VLBI network symposium and users meeting, p 036. https://doi.org/10.22323/1.344.0036

  • Sakai N (2018) Eight new astrometry results of 6.7 GHz CH\(_{3}\)OH and 22 GHz H\(_{2}\)O masers in the Perseus arm. In: Tarchi A, Reid MJ, Castangia P (eds) Astrophysical masers: unlocking the mysteries of the universe, IAU symposium, vol 336, pp 168–171. https://doi.org/10.1017/S1743921317010110

  • Sakai N, Nakanishi H, Matsuo M, Koide N, Tezuka D, Kurayama T, Shibata KM, Ueno Y, Honma M (2015) Outer rotation curve of the Galaxy with VERA. III. Astrometry of IRAS 07427-2400 and test of the density-wave theory. Publ Astron Soc Jpn 67(4):69. https://doi.org/10.1093/pasj/psv049. arXiv:1505.03543

    Article  ADS  Google Scholar 

  • Sakai N, Nagayama T, Nakanishi H, Koide N, Kurayama T, Izumi N, Hirota T, Yoshida T, Shibata KM, Honma M (2019a) Vertical structure and kinematics of the Galactic outer disk. Publ Astron Soc Jpn. https://doi.org/10.1093/pasj/psz125. arXiv:1910.08146

  • Sakai N, Reid MJ, Menten KM, Brunthaler A, Dame TM (2019b) Noncircular motions in the outer perseus spiral arm. Astrophys J 876(1):30. https://doi.org/10.3847/1538-4357/ab12e0. arXiv:1903.11103

    Article  ADS  Google Scholar 

  • Sanna A, Reid MJ, Dame TM, Menten KM, Brunthaler A (2017) Mapping spiral structure on the far side of the Milky Way. Science 358:227–230. https://doi.org/10.1126/science.aan5452. arXiv:1710.06489

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sanna A, Moscadelli L, Goddi C, Krishnan V, Massi F (2018) Protostellar Outflows at the EarliesT Stages (POETS) I Radio thermal jets at high resolution nearby H2O maser sources. Astron Astrophys 619:A107. https://doi.org/10.1051/0004-6361/201833573. arXiv:1807.06680

    Article  ADS  Google Scholar 

  • Selina RJ, Murphy EJ, McKinnon M, Beasley A, Butler B, Carilli C, Clark B, Durand S, Erickson A, Grammer W, Hiriart R, Jackson J, Kent B, Mason B, Morgan M, Ojeda OY, Rosero V, Shillue W, Sturgis S, Urbain D (2018) The ngVLA reference design. In: Murphy E (ed) Science with a next generation Very Large Array, ASP Conference Series, vol 517. Astronomical Society of the Pacific, San Francisco, p 15

  • Shapiro II, Wittels JJ, Counselman CC III, Robertson DS, Whitney AR, Hinteregger HF, Knight CA, Rogers AEE, Clark TA, Hutton LK, Niell AE (1979) Submilliarcsecond astrometry via VLBI. I—relative position of the radio sources 3C 345 and NRAO 512. Astron J 84:1459–1469. https://doi.org/10.1086/112565

    Article  ADS  Google Scholar 

  • Smirnov A, Pilipenko S, Golubev E, Arhipov M, Pishnov V, Kosmovich T, Filina E, Baryshev A, De Graauw T, Likhachev S, Kardashev N (2018) Current status of the millimetron space observatory. In: 42nd COSPAR scientific assembly, vol 42, pp E4.2-12-18

  • Sohn BW, Giovannini G, Giroletti M, Kino M, Hada K, Ro H, Kim J, Koyama S, Orienti M, Honma M, Nagai H, Oyama T, Lico R, Oh S, Zhao G, Cassaro P, Orfei A, Stagni T M Jung, Vincente P, M R, Dodson R (2018) EATING VLBI and KVN-Yebes observations of AGN jets. In: 14th European VLBI network symposium and users meeting, p 120. https://doi.org/10.22323/1.344.0120

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454. https://doi.org/10.1103/RevModPhys.70.1393. arXiv:astro-ph/9712238

    Article  ADS  Google Scholar 

  • Sudou H, Omodaka T, Murakami K, Nagayama T, Nakagawa A, Urago R, Nagayama T, Hirano K, Honma M (2019) Annual parallax measurements of a semi-regular variable star SV Pegasus with VERA. Publ Astron Soc Jpn 71(1):16. https://doi.org/10.1093/pasj/psy133. arXiv:1810.13064

    Article  ADS  Google Scholar 

  • Tercero F, García-Pérez O (2019) Broadband K-Q-W feed system for the 40 meters Yebes radio telescope. In: 2019 International conference on electromagnetics in advanced applications (ICEAA), pp 0719–0724. https://doi.org/10.1109/ICEAA.2019.8879329

  • Thompson AR, Moran JM, Swenson J George W (2017) Interferometry and synthesis in radio astronomy, 3rd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-44431-4

  • Titov O (2007) Effect of the selection of reference radio sources on geodetic estimates from VLBI observations. J Geod 81(6):455–468. https://doi.org/10.1007/s00190-007-0145-1

    Article  ADS  Google Scholar 

  • Truebenbach AE, Darling J (2017) The VLBA extragalactic proper motion catalog and a measurement of the secular aberration drift. Astrophys J Suppl 233(1):3. https://doi.org/10.3847/1538-4365/aa9026

    Article  ADS  Google Scholar 

  • Tsuboi M (2009) VSOP-2/ASTRO-G Project Overview for the Astronomy Community. In: Hagiwara Y, Fomalont E, Tsuboi M, Yasuhiro M (eds) Approaching micro-arcsecond resolution with VSOP-2: astrophysics and technologies, ASP Conference Series, vol 402. Astronomical Society of the Pacific, San Francisco, p 30

  • Vallenari A (2018) The future of astrometry in space. Front Astron Space Sci 5:11. https://doi.org/10.3389/fspas.2018.00011

    Article  ADS  Google Scholar 

  • van Bemmel I, Small D, Kettenis M, Szomoru A, Moellenbrock G, Janssen M (2018) CASA on the fringe. In: 14th European VLBI network symposium and users meeting, p 79. https://doi.org/10.22323/1.344.0079

  • van Cittert PH (1934) Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica 1:201–210. https://doi.org/10.1016/S0031-8914(34)90026-4

  • van Langevelde HJ, Vlemmings W, Diamond PJ, Baudry A, Beasley AJ (2000) VLBI astrometry of the stellar image of U Herculis, amplified by the 1667 MHz OH maser. Astron Astrophys 357:945–950. arXiv:1810.13064

    ADS  Google Scholar 

  • van Langevelde H, Quiroga-Nuñez LH, Vlemmings WHT, Loinard L, Honma M, Nakagawa K A Immer, Burns Y R Pihlstrom, Sjouwerman L, Natarajan I, Rich RM, Deane R (2018) The synergy between VLBI and Gaia astrometry. In: 14th European VLBI network symposium and users meeting, p 043. https://doi.org/10.22323/1.344.0043

  • Venturi T, Paragi Z, Lindqvist M (2020) VLBI20-30: a scientific roadmap for the next decade. The future of the European VLBI Network. Tech. rep., JIVE

  • VERA Collaboration, Hirota T, Nagayama T, Honma M, Adachi Y, Burns RA, Chibueze JO, Choi YK, Hachisuka K, Hada K, Hagiwara Y, Hamada S, Hand a T, Hashimoto M, Hirano K, Hirata Y, Ichikawa T, Imai H, Inenaga D, Ishikawa T, Jike T, Kameya O, Kaseda D, Kim JS, Kim J, Kim MK, Kobayashi H, Kono Y, Kurayama T, Matsuno M, Morita A, Motogi K, Murase T, Nakagawa A, Nakanishi H, Niinuma K, Nishi J, Oh CS, Omodaka T, Oyadomari M, Oyama T, Sakai D, Sakai N, Sawada-Satoh S, Shibata KM, Shizugami M, Sudo J, Sugiyama K, Sunada K, Suzuki S, Takahashi K, Tamura Y, Tazaki F, Ueno Y, Uno Y, Urago R, Wada K, Wu YW, Yamashita K, Yamashita Y, Yamauchi A, Yuda A (2020) The First VERA Astrometry Catalog. PASJ https://doi.org/10.1093/pasj/psaa018. arXiv:2002.03089

  • Walker RC, Chatterjee S (1999) VLBA scientific memorandum n. 23: ionospheric corrections using GPS based models. Tech. rep., NRAO. https://science.nrao.edu/facilities/vlba/publications/memos/sci/sci23memo.ps

  • Wittels JJ (1975) Positions and kinematics of quasars and related radio objects inferred from VLBI observations. PhD thesis, Massachusetts Institute of Technology (USA)

  • Wood PR (2015) The pulsation modes, masses and evolution of luminous red giants. Mon Not R Astron Soc 448(4):3829–3843. https://doi.org/10.1093/mnras/stv289. arXiv:1502.03137

    Article  ADS  Google Scholar 

  • Wu YW, Reid MJ, Sakai N, Dame TM, Menten KM, Brunthaler A, Xu Y, Li JJ, Ho B, Zhang B, Rygl KLJ, Zheng XW (2019) Trigonometric parallaxes of star-forming regions beyond the tangent point of the sagittarius spiral arm. Astrophys J 874(1):94. https://doi.org/10.3847/1538-4357/ab001a. arXiv:1901.093137

    Article  ADS  Google Scholar 

  • Xu Y, Reid M, Dame T, Menten K, Sakai N, Li J, Brunthaler A, Moscadelli L, Zhang B, Zheng X (2016) The local spiral structure of the Milky Way. Sci Adv 2:e1600878–e1600878. https://doi.org/10.1126/sciadv.1600878. arXiv:1610.00242

    Article  ADS  Google Scholar 

  • Xu S, Zhang B, Reid MJ, Menten KM, Zheng X, Wang G (2018) The parallax of the red hypergiant VX Sgr with accurate tropospheric delay calibration. Astrophys J 859(1):14. https://doi.org/10.3847/1538-4357/aabba6. arXiv:1804.00894

    Article  ADS  Google Scholar 

  • Xu S, Zhang B, Reid MJ, Zheng X, Wang G (2019) Comparison of Gaia DR2 parallaxes of stars with VLBI astrometry. Astrophys J 875(2):114. https://doi.org/10.3847/1538-4357/ab0e83. arXiv:1903.04105

    Article  ADS  Google Scholar 

  • Yang J, Pantaleev M, Kildal P, Klein B, Karandikar Y, Helldner L, Wadefalk N, Beaudoin C (2011) Cryogenic 2–13 GHz eleven feed for reflector antennas in future wideband radio telescopes. IEEE Trans Antennas Propag 59(6):1918–1934. https://doi.org/10.1109/TAP.2011.2122229

    Article  ADS  Google Scholar 

  • Yang J, Paragi Z, van der Horst AJ, Gurvits LI, Campbell RM, Giannios D, An T, Komossa S (2016) No apparent superluminal motion in the first-known jetted tidal disruption event Swift J1644+5734. Mon Not R Astron Soc 462(1):L66–L70. https://doi.org/10.1093/mnrasl/slw107. arXiv:1605.06461

    Article  ADS  Google Scholar 

  • Yang H, Cho SH, Yun Y, Yoon DH, Kim DJ, Kim H, Yoon SC, Dodson R, Rioja MJ, Imai H (2020) Asymmetric distributions of H2O and SiO masers toward the symbiotic star V627 Cas. Mon Not R Astron Soc 495:1284–1290. https://doi.org/10.1093/mnras/staa1206

  • Yao JM, Manchester RN, Wang N (2017) A new electron-density model for estimation of pulsar and FRB distances. Astrophys J 835(1):29. https://doi.org/10.3847/1538-4357/835/1/29. arXiv:1610.09448

    Article  ADS  Google Scholar 

  • Yoon DH, Cho SH, Yun Y, Choi YK, Dodson R, Rioja M, Kim J, Imai H, Kim D, Yang H, Byun DY (2018) Astrometrically registered maps of \(\text{ H}_{2}\text{ O }\) and SiO masers toward VX Sagittarii. Nat Commun 9:2534. https://doi.org/10.1038/s41467-018-04767-8. arXiv:1807.04455

    Article  ADS  Google Scholar 

  • Zhang B, Reid MJ, Menten KM, Zheng XW, Brunthaler A, Dame TM, Xu Y (2013) Parallaxes for W49N and G048.60+0.02: distant star forming regions in the perseus spiral arm. Astrophys J 775(1):79. https://doi.org/10.1088/0004-637X/775/1/79. arXiv:1312.3856

    Article  ADS  Google Scholar 

  • Zhang B, Zheng X, Reid MJ, Honma M, Menten KM, Brunthaler A, Kim J (2017) VLBA trigonometric parallax measurement of the semi-regular variable RT Vir. Astrophys J 849(2):99. https://doi.org/10.3847/1538-4357/aa8ee9

    Article  ADS  Google Scholar 

  • Zhang B, Reid MJ, Zhang L, Wu Y, Hu B, Sakai N, Menten KM, Zheng X, Brunthaler A, Dame TM, Xu Y (2019) Parallaxes for star-forming regions in the inner perseus spiral arm. Astron J 157(5):200. https://doi.org/10.3847/1538-3881/ab141d. arXiv:1903.11594

  • Zhao GY, Algaba JC, Lee SS, Jung T, Dodson R, Rioja M, Byun DY, Hodgson J, Kang S, Kim DW, Kim JY, Kim JS, Kim SW, Kino M, Miyazaki A, Park JH, Trippe S, Wajima K (2018) The power of simultaneous multi-frequency observations for mm-VLBI: beyond frequency phase transfer. Astron J 155(1):26. https://doi.org/10.3847/1538-3881/aa99e0. arXiv:1712.06243

  • Zhao GY, Jung T, Sohn BW, Kino M, Honma M, Dodson R, Rioja M, Han ST, Shibata K, Byun DY, Akiyama K, Algaba JC, An T, Cheng X, Cho I, Cui Y, Hada K, Hodgson JA, Jiang W, Lee JW, Lee JA, Niinuma K, Park JH, Ro H, Sawada-Satoh S, Shen ZQ, Tazaki F, Trippe S, Wajima K, Zhang Y (2019) Source-frequency phase-referencing observation of AGNS with KAVA using simultaneous dual-frequency receiving. J Korean Astron Soc 52(1):23–30. https://doi.org/10.5303/JKAS.2019.52.1.23. arXiv:1903.11796

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 730562 [RadioNet] and 730884 [VLBI with the SKA]. It was also supported by the ngVLA Community Studies program, coordinated by the ngVLA design and development project of the National Science Foundation and operated under cooperative agreement by Associated Universities, Inc. ADS was used heavily to search for relevant publications and provide references. We have discussed the ideas and issues in this document with many experts and young enthusiastic up coming researchers, to whom we are grateful for their time. In particular, Ed Fomalont, Walter Alef, Mark Reid, Patrick Charlot, Mareki Honma, Simón Al-Tariqa, Richard W. Porcas, Luca Moscadelli, and Huib van Langevelde have been reference points for us, as for many other people. The comments from the anonymous referees were much appreciated. F. Kristen provided the raw data for Fig. 9b, to allow the re-fitting. We thank A. Deller, F. Kristen, J. Flygare, G. Keating, ASTRON, and CSIRO for the reproduction of their figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. Rioja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Symbols

Symbols

See Table 4.

Table 4 Symbols and abbreviations used in this review

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rioja, M.J., Dodson, R. Precise radio astrometry and new developments for the next generation of instruments. Astron Astrophys Rev 28, 6 (2020). https://doi.org/10.1007/s00159-020-00126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-020-00126-z

Keywords

Navigation