Skip to main content
Log in

Modeling 3D acoustic-wave propagation using modified cuboid-based staggered-grid finite-difference methods with temporal and spatial high-order accuracy

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

To improve the modeling accuracy and adaptability of traditional temporal second-order staggered-grid finite-difference (SFD) methods for 3D acoustic-wave modeling, we propose a modified time-space-domain temporal and spatial high-order SFD stencil on a cuboid grid. The grid nodes on a double-pyramid stencil and the standard orthogonality stencil are used to approximate temporal and spatial derivatives. This stencil can adopt different grid spacing in each spatial axis, and thus it is more flexible than the existing one with the same grid spacing. Based on the time-space-domain dispersion relation, the high-order FD coefficients are generated by using Taylor expansion and least squares. Numerical analyses and modeling examples demonstrate that our proposed schemes have higher accuracy and better stability than other conventional schemes, and thus larger time steps can be used to improve the computational efficiency in 3D case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford R.M., Kelly K.R. and Boore D.M., 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39, 834–842.

    Article  Google Scholar 

  • Aminzadeh F., Brac J. and Kunz T., 1997. SEG/EAGE 3-D Salt and Overthrust Models. SEG/EAGE 3-D Modeling Series, No. 1: Distribution CD of Salt and Overthrust models. SEG, Tulsa, OK.

    Google Scholar 

  • Carcione J.M., Herman G.C. and Ten Kroode A., 2002. Seismic modeling. Geophysics, 67, 1304–1325.

    Article  Google Scholar 

  • Chen H., Zhou H. and Sheng S., 2016. General rectangular grid based time-space domain high-order finite-difference methods for modeling scalar wave propagation. J. Appl. Geophys., 133, 141–156.

    Article  Google Scholar 

  • Chen J.B., 2011. A stability formula for lax-wendroff methods with fourth-order in time and general-order in space for the scalar wave equation. Geophysics, 76, T37-T42.

  • Chu C. and Stoffa P.L., 2012. Determination of finite-difference weights using scaled binomial windows. Geophysics, 77, W17–W26.

    Article  Google Scholar 

  • Dablain M., 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51, 54–66

    Article  Google Scholar 

  • Di Bartolo L., Dors C. and Mansur W.J., 2012. A new family of finite-difference schemes to solve the heterogeneous acoustic wave equationnew finite-difference schemes for acoustics. Geophysics, 77, T187–T199.

    Article  Google Scholar 

  • Etemadsaeed L., Moczo P., Kristek J., Ansari A. and Kristekova M., 2016. A no-cost improved velocitystress staggered-grid finite-difference scheme for modelling seismic wave propagation. Geophys. J. Int., 207, 481–511.

    Article  Google Scholar 

  • Etgen J.T. and O’Brien M.J., 2007. Computational methods for large-scale 3d acoustic finite-difference modeling: A tutorial. Geophysics, 72, SM223-SM230.

  • Fornberg B., 1998. Classroom note: Calculation of weights in finite difference formulas. SIAM Rev., 40 685–691.

    Article  Google Scholar 

  • Holberg O., 1987. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys. Prospect, 35, 629–655.

    Article  Google Scholar 

  • Kindelan M., Kamel A. and Sguazzero P., 1990. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics, 55, 107–110.

    Article  Google Scholar 

  • Lax P. and Wendroff B., 1960. Systems of conservation laws. Commun. Pure Appl. Math., 13, 217-237

  • Lele S.K., 1992. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 16 42.

  • Levander A.R., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53, 1425–1436.

    Article  Google Scholar 

  • Liu Y., 2014. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys. J. Int., 197, 1033–1047.

    Article  Google Scholar 

  • Liu Y. and Sen M.K., 2009. A new time-space domain high-order finite-difference method for the acoustic wave equation. J. Comput. Phys., 228, 8779–8806.

    Article  Google Scholar 

  • Liu Y. and Sen M.K., 2011. Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes. Bull. Seismol. Soc. Amer, 101, 141–159.

    Article  Google Scholar 

  • Liu Y. and Sen M.K., 2013. Time-space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. J. Comput. Phys., 232, 327–345.

    Article  Google Scholar 

  • Moczo P., Kristek J., Galis M., Chaljub E. and Etienne V., 2011. 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio. Geophys. J. Int., 187, 1645–1667.

    Article  Google Scholar 

  • Moczo P., Kristek J. and Galis M., 2014. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Ren Z. and Li Z., 2019. High-order temporal and implicit spatial staggered-grid finite-difference operators for modelling seismic wave propagation. Geophys. J. Int., 217, 844–865.

    Article  Google Scholar 

  • Ren Z., Li Z., Liu Y. and Sen M.K., 2017. Modeling of the acoustic wave equation by staggered-grid finite-difference schemes with high-order temporal and spatial accuracy. Bull. Seismol. Soc. Amer, 107, 2160–2182.

    Article  Google Scholar 

  • Saenger E.H., Gold N. and Shapiro S.A., 2000. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31, 77–92.

    Article  Google Scholar 

  • Song X., Fomel S. and Ying L., 2013. Low-rank finite-differences and low-rank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophys. J. Int., 193, 960–969.

    Article  Google Scholar 

  • Tan S. and Huang L., 2014. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophys. J. Int., 197, 1250–1267.

    Article  Google Scholar 

  • Virieux J., 1984. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49, 1933–1942.

    Article  Google Scholar 

  • Wang E., Liu Y. and Sen M.K., 2016. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int., 206, 1933–1958.

    Article  Google Scholar 

  • Wang E., Ba J. and Liu Y., 2019. Temporal high-order time-space domain finite-difference methods for modeling 3D acoustic wave equations on general cuboid grids. Pure Appl. Geophys., 176, 5391–5414.

    Article  Google Scholar 

  • Yan H. and Yang L., 2017. Seismic modeling with an optimal staggered-grid finite-difference scheme based on combining taylor-series expansion and minimax approximation. Stud. Geophys. Geod, 61, 560–574.

    Article  Google Scholar 

  • Zhang J.H. and Yao Z.X., 2013. Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. J. Comput. Phys., 250, 511–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Liu, Y. Modeling 3D acoustic-wave propagation using modified cuboid-based staggered-grid finite-difference methods with temporal and spatial high-order accuracy. Stud Geophys Geod 64, 465–482 (2020). https://doi.org/10.1007/s11200-020-1013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-020-1013-1

Keywords

Navigation