Skip to main content
Log in

Gold’s red shift: colorimetry of multiple reflections in grooves

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The color of fine gold shows paradoxical variations that have tentatively been explained by metallurgic factors. Measurements and digital photographs show a significantly redder color than predicted by theory. A novel purely optical explanation based on the multiple reflection in grooves is suggested. The analysis in the colorimetric space RGB of the photographs of several fine gold samples and coins confirms that the gold red shift comes from minute grooves that seem black but that in fact have an extremely dark orange/red color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. ε1 + 2 = (n + ik)2

  2. In films, whose thickness is smaller than the optical depth of visible light (80 nm) and in “island deposits”, specific phenomena take place [7, 27].

  3. \( {R}_{\mathrm{rough}}={R}_{\mathrm{smooth}}{e}^{-\frac{4\pi {\sigma}_h}{\lambda }} \)

  4. Very small random scratches can produce interferences, like Young’s double slits, but their effect is negligible in the specular direction. In other directions, iridescence and goniochromatism can be seen when a scratched surface is lit with strong light or by the sun [6]. Specially manufactured diffraction gratings, such as echelon gratings, produce vivid color in privileged directions.

  5. It defines the standard color of gold in daylight (standard illuminant D65) reflected specularly at a normal angle: \( {\mathrm{Au}}^{\star m}={R}_{\lambda}^{\star 1}(0) \)

  6. This case is not limiting as other orientations would give the same type of results with slightly different values, provided that the viewing angle is less than 40° (Fresnel effect negligible below.

  7. Concave grooves appear mainly black or concentrate light according to their radius of curvature.

  8. It was manually adjusted in both planes to take into account the pixel maximal value.

  9. The normal is \( \frac{\pi }{2}-\alpha \) when i odd and \( \frac{3\pi }{2}-\alpha +\omega \) when i even. Hence v2k + 1 = 2 + v1 and v2k + 2 = 2π − 2 − v1 − 2α.

  10. See Weisstein, Eric W. ”Multiple-Angle Formulas.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/Multiple-AngleFormulas.html

  11. ITU-R BT.709 Primaries

References

  1. Aspnes DE, Kinsbron E, Bacon DD (1980) Optical properties of Au: Sample effects. Phys Rev B 21(8):3290–3299

    Article  CAS  Google Scholar 

  2. Beaglehole D, Hunderi O (1969) On the reflectivity of rough metal surfaces. Phys Lett 29A(6):335336

    Google Scholar 

  3. Beaglehole D, Hunderi O (1970) Study of the interaction of light with rough metal surfaces (I. Experiment & II. Theory). Phys Rev B 2(2):309–329

    Article  Google Scholar 

  4. Beckman P, Spizzichino A (1963) The scattering of electromagnetic waves from rough surfaces. Pergamon Press, Oxford

    Google Scholar 

  5. Boas W (1957) Color change in metals upon plastic deformation. In: Fisher JC, Johnston WG, Thomson R (eds) Dislocations And Mechanical Properties Of Crystals Dislocations And Mechanical Properties Of Crystals. John Wiley And Sons Inc., p 406407

  6. Carles B, Xavier P, Stéphane M, Djamchid G (2004/09) A physically-based model for rendering realistic scratches. Comput Graph Forum 23:361370

  7. Ciesielski A, Skowronski L, Trzinski M, Gorecka E, Trautman P, Szoplik T (2018) Evidence of germanium segregation in gold thin films. Surf Sci 674:73–78

    Article  CAS  Google Scholar 

  8. Colleu, Yannick (2014) Quelle taxe sur la fausse vraie monnaie, Bull Numismatique 129. CGB

  9. Corregidor V, Alves LC, Cruz J (2013) Analysis of surface stains on modern gold coins. Nucl Inst Methods Phys Res B 306:232–235

    Article  CAS  Google Scholar 

  10. Davies H (1954) The reflection of electromagnetic waves from a rough surface. Proc Inst Electr Eng 101:209–214

    Google Scholar 

  11. Eales HV (1967) Reflectivity of gold and gold-silver alloys. Econ Geol 62:412–420

    Article  Google Scholar 

  12. Eales HV (1967) Checking of optical data derived from polarization figures. Econ Geol 62(5):737–738

    Article  CAS  Google Scholar 

  13. Eales HV (1968) Determining fineness variation characteristics in gold ores by reflectometry. Econ Geol 63(6):688691

    Article  Google Scholar 

  14. Griesser M, Traum R, Mayerhofer KE, Piplits K, Denk R, Winter H (2005) Brown spot corrosion on historic gold coins and medals in. Surf Eng 21(5-6):385–392

    Article  CAS  Google Scholar 

  15. Gusmano G, Montanari R, Kaciulis S, Montesperelli G, Denk R (2004) “Gold corrosion”: red stains on a gold Austrian Ducat. Appl Phys A Mater Sci Process 79:205–211

    Article  CAS  Google Scholar 

  16. Hodgson JN (1968) The optical properties of gold, J. Phys Chem. Solids. Pergamon Press 29:2175–2181

    CAS  Google Scholar 

  17. Köster W, Stahl R (1967) Uber den Einfluß von Legierungsbildung, Verformung und Rekristallisation sowie von Nah- und Fernordnung auf optische Lonstanten der Edelmetalle und ihrer Legierungen. Z Metallkde B 58(H 11):768–777

    Google Scholar 

  18. Liang C, Yang C, Huanga N (2011) Investigating the tarnish and corrosion mechanisms of Chinese gold coins Surf. Interface Anal 2011(43):763–769

    Article  Google Scholar 

  19. Manas A (2015) The Music of Gold, can gold counterfeited coins be detected by ear? Eur J Phys 36(4):04501

    Article  Google Scholar 

  20. Manas A (2018) Fifty shades of yellow A color model for goldsilver-copper alloys. Gold Bull 51(4):205–212

    Article  CAS  Google Scholar 

  21. McPeak KM, Jayanti SV, Kress SJP, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: Rules and recipes. ACS Photon 2:326–333

    Article  CAS  Google Scholar 

  22. Olmon R, Slovick B et al (2012) Optical dielectric function of gold. Phys Rev B86:235147

    Article  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  24. Tammann G (1919) Zum Gedachtnis der Entdeckung des Isomorphismus vor 100 Jahren. Die chemischen und galvanischen Eigenschaften von Mischkristallreihen und ihre Atomverteilung. Z Anorg Allg Chem (Zaac) 107:1

    Article  CAS  Google Scholar 

  25. Torrance KE, Sparrow EM (1967) Theory for off-specular reflection from roughened surfaces. J Opt Soc Am 57:11051114

    Article  Google Scholar 

  26. Winsemius P, Lengkeek HP, Van Kampen FF (1975) Structure Dependence of Optical Properties of Cu, Ag an Au. Physica 79B:529–546

    Google Scholar 

  27. Yakubovsky DI, Arsenin AV, Stebunov YV, Fedyanin DY, Volkov VS (2017) Optical constants and structural properties of thin gold films. Opt Express 25:25574–25587

    Article  CAS  Google Scholar 

  28. Yates EL (1962) The change in colour of a silver-gold alloy on plastic deformation. Aust J Phys 16(1):40–46

    Article  Google Scholar 

Download references

Acknowledgment

I wish to thank Jacques de Mathan, Vicky Buffery, and Pierre Gruss for their help and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Manas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fresnel coefficient and V-grooves

The Fresnel coefficients are given by the formulas:

$$ {F}_{\lambda}^s={\left|\frac{\cos \theta -\sqrt{\epsilon_1\left(\lambda \right)-{\sin}^2\theta +i{\varepsilon}_2\left(\lambda \right)}}{\cos \theta +\sqrt{\epsilon_1\left(\lambda \right)-{\sin}^2\theta +i{\varepsilon}_2\left(\lambda \right)}}\right|}^2\mathrm{and}\ {F}_{\lambda}^p={\left|\frac{-\left({\upvarepsilon}_1\left(\uplambda \right)+\mathrm{i}{\varepsilon}_2\left(\uplambda \right)\right)\cos \theta +\sqrt{\epsilon_1\left(\lambda \right)-{\sin}^2\theta +i{\varepsilon}_2\left(\lambda \right)}}{\left({\upvarepsilon}_1\left(\uplambda \right)+\mathrm{i}{\varepsilon}_2\left(\uplambda \right)\right)\cos \theta +\sqrt{\epsilon_1\left(\lambda \right)-{\sin}^2\theta +i{\varepsilon}_2\left(\lambda \right)}}\right|}^2 $$

The ray trajectory in a parallel V-groove with angle ω is given by its successive azimuths vi (0 = north, counted positive clockwise) after each reflection: First, the ray enters the groove at angle θ which corresponds to azimuth v1 = π + θ. To enter the groove, the angle must satisfy θ < α and θ > αω. Then it hits the first facet at an angle f1 with the facet’s normal (n1) and is then reflected at the same angle according to the law of reflection. According to its new azimuth v2, it can either emerge from the groove or hit the other facet and so on. The ray’s azimuth after the ith reflexion is vi + 1 and the normal ni depends on which facet is hit: Footnote 9\( {n}_i=\pi -\alpha +\frac{\omega }{2}+{\left(-1\right)}^i\left(\frac{\pi }{2}+\frac{\omega }{2}\right) \). vi is the incoming ray, the outgoing ray’s azimuth is vi + 1 = π + 2 ni − vi. It makes an angle with the facet’s normal fi = ni − vi + π. It emerges from the groove if 2π − α ≤ vi + 1 < ω − α, otherwise it bounces against a facet again.

$$ \left\{\begin{array}{c}{v}_{k+1}=\frac{\omega }{2}-\alpha -{\left(-1\right)}^k\left(\frac{\omega }{2}-\alpha - k\omega -{v}_1\right)\\ {}{f}_{k+1}=\left|\pi -{\left(-1\right)}^k\left( k\omega +\alpha +{v}_1-\frac{\pi }{2}\right)\right|\kern1.5em \end{array}\right. $$

The ray always ends up emerging after a certain number of reflections that depend on the initial conditions (θ) and the groove geometry (ω and α). Its final azimuth is vm + 1 if m is the total number of reflections. When considering the groove as an optical system, it does not generally follow the law of reflection. A ray in a groove follows the law of reflection if and only if the condition v1 + vm + 1 = π is satisfied. This condition is important for two reasons: on the one hand it maximizes the light received and on the other hand it allows a comparison to be made with the traditional case of a single reflection on a flat surface.

Two cases must be distinguished according to the parity of the number of reflections (m is odd or even): In the first case, when there is an even number of reflections (m = 2 k), the condition is \( \omega =\frac{\pi +2}{m} \) with α − ω < θ < α. The groove angle can take only discrete values. For normal incidence (θ = 0), these authorized angles are \( \frac{\pi }{2},\frac{\pi }{4},\frac{\pi }{6},\frac{\pi }{8},\dots \) For such discrete values, vertical rays are retroreflected and bounce back to their source. For other values, the ray is lost and the groove appears as black. When the the groove angle condition is satisfied: the color is modulated by the groove orientation (α). In the second case, when there is an odd number of reflections (m = 2 k + 1) the condition of emergence is independent of θ but depends on α: \( \omega =\frac{\pi -2\alpha }{m-1} \) which implies \( \frac{\pi }{m+1}<\omega <\frac{\pi }{m-1} \). For symmetrical grooves (\( \alpha =\frac{\omega }{2} \)), the condition becomes \( \omega =\frac{\pi }{m} \). The color hence depends on θ and α as each configuration produces a specific color.

For retroreflecting rays, the intensity of the reflected light decreases exponentially with the number of reflections. Using the multiple-angle formula \( \sin (nx)={2}^{n-1}{\prod}_{k=0}^{n-1}\sin \left(\frac{k\pi}{n}+x\right) \) the intensity becomes:Footnote 10

If m even m = 2p

Hence \( \omega =\frac{\pi }{m} \).

$$ {\displaystyle \begin{array}{c}{I}_m={I}_0\prod \limits_{i=1}^m\cos {f}_i={I}_0\prod \limits_{i=0}^{2p-1}\cos {f}_{i+1}={I}_0\prod \limits_{j=0}^{p-1}\cos {f}_{2j+1}\prod \limits_{j=0}^{p-1}\cos {f}_{2j+2}\\ {}={I}_0\prod \limits_{j=0}^{p-1}\sin \left(\alpha +{v}_1+\frac{j\pi}{p}\right)\prod \limits_{j=0}^{p-1}\sin \left(\omega +\alpha +{v}_1+\frac{j\pi}{p}\right)\kern3.5em \\ {}={I}_0\frac{1}{2^{m-2}}\sin \left(\alpha +\theta \right)\sin \left(\alpha +\theta +\frac{\pi }{m}\right)\kern10.75em \end{array}} $$

If m is odd m = 2p + 1 and symmetrical groove (\( \alpha =\frac{\omega }{2} \)): \( \omega =\frac{\pi }{m} \) implying \( {I}_m={I}_0\frac{1}{2^{m-2}}\sin \left(\frac{\pi }{m}+2\theta \right)\sin \left(\frac{3\pi }{2m}+\theta \right) \)

The geometric factor is equal to 1 for symmetrical retroreflecting grooves (\( {H}_m^{\star }=1 \)) when \( \omega =\frac{\pi }{m} \) with \( \alpha =\frac{\omega }{2} \) otherwise

$$ {H}_m=\left\{\begin{array}{c}\frac{\sin \alpha +\sin \left(\frac{\pi }{2}+\alpha -2\omega \right)}{\sin \alpha +\sin \left(\omega -\alpha \right)},\kern0.5em m\ \mathrm{even}\\ {}\frac{\sin \alpha }{\sin \alpha +\sin \left(\omega -\alpha \right)}\kern1em ,\kern0.5em m\ \mathrm{odd}\end{array}\right. $$

Hence

$$ \left\{\begin{array}{c}\begin{array}{c}{f}_i^{\star }=\left|\left(k+1\right)\frac{\pi }{m}+\pi \left(\frac{1}{2}-{\left(-1\right)}^k\right)\right|\kern0.75em \\ {}{R}_i^{\star}\left(\lambda \right)=\frac{1}{2}{\prod}_{i=1}^m{F}_{\lambda}^s\left({f}_i^{\star}\right)+\frac{1}{2}{\prod}_{i=1}^m{F}_{\lambda}^p\left({f}_i^{\star}\right)\end{array}\\ {}\begin{array}{c}{H}_m^{\star }=1\kern14.25em \\ {}{I}_m^{\star }={I}_0\frac{1}{2^{m-2}}\sin \left(\frac{\pi }{m}\right)\sin \left(\frac{3\pi }{2m}\right)\kern2.5em \end{array}\end{array}\right. $$

Color space conversion

From sRGB to RGBFootnote 11:

$$ {\left(\begin{array}{c}R\\ {}G\\ {}B\end{array}\right)}_{D65}={\left(\begin{array}{c}\Gamma \left(\frac{R}{255}\right)\\ {}\Gamma \left(\frac{G}{255}\right)\\ {}\Gamma \left(\frac{RB}{255}\right)\end{array}\right)}_{D65}\kern-.5em \mathrm{with}\ \Gamma (C)=\left\{\begin{array}{c}\frac{C}{12.92}\kern2.5em ,\kern0.5em C\le 0.03928\\ {}{\left(\frac{C+0.055}{1.055}\right)}^{2.4},\kern0.5em C>0.03928\end{array}\right. $$

From RGB to XYZ

$$ {\left(\begin{array}{c}X\\ {}Y\\ {}Z\end{array}\right)}_{D65}=\left(\begin{array}{ccc}0.4124& 0.3576& 0.1805\\ {}0.2126& 0.7152& 0.0722\\ {}0.0193& 0.1192& 0.9505\end{array}\right)\times {\left(\begin{array}{c}R\\ {}G\\ {}B\end{array}\right)}_{D65} $$

From XYZ to xyY

$$ {\left(\begin{array}{c}X\\ {}Y\\ {}Z\end{array}\right)}_{D65}={\left(\begin{array}{c}\frac{X}{X+Y+Z}\\ {}\frac{Y}{X+Y+Z}\\ {}Y\end{array}\right)}_{D65} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manas, A. Gold’s red shift: colorimetry of multiple reflections in grooves. Gold Bull 53, 147–158 (2020). https://doi.org/10.1007/s13404-020-00285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00285-y

Keywords

Navigation