Skip to main content
Log in

Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

This paper proposes a hybrid credit risk model, in closed form, to price vulnerable options with stochastic volatility. The distinctive features of the model are threefold. First, both the underlying and the option issuer’s assets follow the Heston–Nandi GARCH model with their conditional variance being readily estimated and implemented solely on the basis of the observable prices in the market. Second, the model incorporates both idiosyncratic and systematic risks into the asset dynamics of the underlying and the option issuer, as well as the intensity process. Finally, the explicit pricing formula of vulnerable options enables us to undertake the comparative statistics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Resource: BIS, OTC derivatives statistics, https://www.bis.org/statistics/derstats.htm.

  2. A partial list of the studies on this topic includes Rich (1996), Klein and Inglis (1999, 2001), Cao and Wei (2001), Hui et al. (2007), Liao and Huang (2005), Kao (2016), Liang and Ren (2007), Xu et al. (2012), Tian et al. (2014), Yang et al. (2014), Lee et al. (2016), Wang (2016, 2018), Wang et al. (2017).

  3. For convenience, we use the more parsimonious notation f(t) to indicate \( f(t;\phi _1,\phi _2,\phi _3,\phi _4)\), and similarly for \(A_i(t)\) and \(B_i(t)\).

References

  • Antonelli, F., Ramponi, A., & Scarlatti, S. (2020). CVA and vulnerable options pricing by correlation expansions. Annals of Operation Research. https://doi.org/10.1007/s10479-019-03367-z.

    Article  Google Scholar 

  • Bakshi, G., Madan, D., & Zhang, F. (2006). Investigating the role of systematic and firm-specific factors in default risk: Lessons from empirically evaluating credit risk models. Journal of Business, 79, 1955–1987.

    Article  Google Scholar 

  • Boudreault, M., Gauthier, G., & Thomassin, T. (2014). Contagion effect on bond portfolio risk measures in a hybrid credit risk model. Finance Research Letters, 11, 131–139.

    Article  Google Scholar 

  • Cao, M., & Wei, J. (2001). Vulnerable options, risky corporate bond, and credit spread. Journal of Futures Markets, 21, 301–327.

    Article  Google Scholar 

  • Fard, F. (2015). Analytical pricing of vulnerable options under a generalized jump–diffusion model. Insurance: Mathematics and Economics, 60, 19–28.

    Google Scholar 

  • Gu, J., Ching, W., Siu, T., & Zheng, H. (2014). On reduced-form intensity-based model with ‘trigger’ events. Journal of the Operational Research Society, 65, 331–339.

    Article  Google Scholar 

  • Heston, S., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13, 585–625.

    Article  Google Scholar 

  • Hsieh, K., & Ritchken, P. (2005). An empirical comparison of GARCH option pricing models. Review of Derivatives Research, 8, 129–150.

    Article  Google Scholar 

  • Hui, C., Lo, C., & Ku, K. (2007). Pricing vulnerable European options with stochastic default barriers. IMA Journal of Management Mathematics, 18, 315–329.

    Article  Google Scholar 

  • Hull, J. (2012). Options, futures, and other derivatives (8th ed.). New Jersey: Pearson-Prentice Hall.

    Google Scholar 

  • Hull, J., & White, A. (1995). The impact of default risk on the prices of options and other derivative securities. Journal of Banking and Finance, 19, 299–322.

    Article  Google Scholar 

  • Johnson, H., & Stulz, R. (1987). The pricing of options with default risk. Journal of Finance, 42, 267–280.

    Article  Google Scholar 

  • Kao, L. (2016). Credit valuation adjustment of cap and floor with counterparty risk: A structural pricing model for vulnerable European options. Review of Derivatives Research, 19, 41–64.

    Article  Google Scholar 

  • Kendall, M., & Stuart, A. (1977). The advanced theory of statistics (Vol. 1). New York: Macmillan.

    Google Scholar 

  • Klein, P. (1996). Pricing Black–Scholes options with correlated credit risk. Journal of Banking and Finance, 20, 1211–1229.

    Article  Google Scholar 

  • Klein, P., & Inglis, M. (1999). Valuation of European options subject to financial distress and interest rate risk. Journal of Derivatives, 6, 44–56.

    Article  Google Scholar 

  • Klein, P., & Inglis, M. (2001). Pricing vulnerable European options when the option’s payoff can increase the risk of financial distress. Journal of Banking and Finance, 25, 993–1012.

    Article  Google Scholar 

  • Lee, M., Yang, S., & Kim, J. (2016). A closed form solution for vulnerable options with Heston’s stochastic volatility. Chaos, Solitons and Fractals, 86, 23–27.

    Article  Google Scholar 

  • Liang, G., & Ren, X. (2007). The credit risk and pricing of OTC options. Asia-Pacific Financial Markets, 14, 45–68.

    Article  Google Scholar 

  • Liao, S., & Huang, H. (2005). Pricing Black–Scholes options with correlated interest rate risk and credit risk: An extension. Quantitative Finance, 5, 443–457.

    Article  Google Scholar 

  • Madan, D., & Unal, H. (2000). A two-factor hazard rate model for pricing risky debt and the term structure of credit spreads. Journal of Financial and Quantitative Analysis, 35, 43–65.

    Article  Google Scholar 

  • Rich, D. (1996). The valuation and behavior of Black–Scholes options subject to intertemporal default risk. Review of Derivatives Research, 1, 25–59.

    Article  Google Scholar 

  • Su, Z., & Wang, X. (2019). Pricing executive stock options with averaging features under the Heston–Nandi GARCH model. Journal of Futures Markets, 39, 1056–1084.

    Article  Google Scholar 

  • Tian, L., Wang, G., Wang, X., & Wang, Y. (2014). Pricing vulnerable options with correlated credit risk under jump–diffusion processes. Journal of Futures Markets, 34, 957–979.

    Article  Google Scholar 

  • Wang, G., Wang, X., & Zhou, K. (2017). Pricing vulnerable options with stochastic volatility. Physica A: Statistical Mechanics and its Applications, 485, 91–103.

    Article  Google Scholar 

  • Wang, X. (2016). Pricing vulnerable options with stochastic default barriers. Finance Research Letters, 19, 305–313.

    Article  Google Scholar 

  • Wang, X. (2017). Analytical valuation of vulnerable options in a discrete-time framework. Probability in the Engineering and Informational Sciences, 31, 100–120.

    Article  Google Scholar 

  • Wang, X. (2018). Pricing vulnerable European options with stochastic correlation. Probability in the Engineering and Informational Sciences, 32, 67–95.

    Article  Google Scholar 

  • Xu, W., Xu, W., Li, H., & Xiao, W. (2012). A jump–diffusion approach to modelling vulnerable option pricing. Finance Research Letters, 9, 48–56.

    Article  Google Scholar 

  • Yang, S., Lee, M., & Kim, J. (2014). Pricing vulnerable options under a stochastic volatility model. Applied Mathematics Letters, 34, 7–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee and the editor for their helpful comments and valuable suggestions that led to several important improvements. All errors are our responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was supported by the National Natural Science Foundation of China (Nos. 11701084 and 11671084) and Excellent Young Scholars Program in University of International Business and Economics (17YQ01).

Appendix

Appendix

Proof of Proposition 2.1

We first focus on the case \(j\le t\le T\). Note that given the information at time t, V(j), \(\Lambda (j)\) and \(\sum _{k=1}^{j-1} \Lambda (k)\) are all known. Therefore, we obtain that

$$\begin{aligned} f(t)= & {} E_{t}\Big [\exp \Big \{\phi _1 \ln S(T) +\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) \Big \}\Big ]\nonumber \\= & {} e^{\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) }E_{t}\Big [\exp \Big \{\phi _1 \ln S(T) \Big \}\Big ]. \end{aligned}$$

In addition, at time T, S(T) is also known, it follows that

$$\begin{aligned} f(T)= & {} e^{\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) }E_{T}\Big [\exp \Big \{\phi _1 \ln S(T) \Big \}\Big ]\nonumber \\= & {} e^{\phi _1 \ln S(T) +\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) }, \end{aligned}$$

which in turn implies that

$$\begin{aligned} A_0(T)=A_1(T)=A_2(T)=0. \end{aligned}$$

According to the law of iterated expectations, we have that

$$\begin{aligned}&E_{t}\Big [\exp \Big \{\phi _1 \ln S(T) \Big \}\Big ]\\ \quad&= {} E_t\Big [E_{t+1}\Big [\exp \Big \{\phi _1 \ln S(T) \Big \}\Big ]\Big ]\\ \quad&= E_t\Big [\exp \Big \{ \phi _1\ln S(t+1)+A_0(t+1)+A_1(t+1)h_m(t+2)+A_2(t+1)h_s(t+2) \Big \}\Big ]. \end{aligned}$$

Substituting the dynamics of \(\ln S(t+1)\), \(h_m(t+2)\) and \(h_s(t+2)\) yields that

$$\begin{aligned}&E_{t}\Big [\exp \Big \{\phi _1 \ln S(T) \Big \}\Big ]\\ &\quad= E_t\Big [\exp \Big \{ \phi _1\ln S(t+1)+A_0(t+1)+A_1(t+1)h_m(t+2)+A_2(t+1)h_s(t+2) \Big \}\Big ] \\ \quad&= E_t\Big [\exp \Big \{ \phi _1\ln S(t)+\phi _1 r-\frac{1}{2}\phi _1 h_s(t+1)+\phi _1\sqrt{h_s(t+1)}Z_s(t+1)\\ &\qquad-\frac{1}{2}\phi _1\beta _s^2h_m(t+1)+\phi _1\beta _s\sqrt{h_m(t+1)}Z_m(t+1)+ A_0(t+1)\\ &\qquad+A_1(t+1)\Big (w_m+b_m h_m(t+1)+a_m(Z_m(t+1)-c_m\sqrt{h_m(t+1)})^2\Big )\\ &\qquad+ A_2(t+1)\Big (w_s+b_s h_s(t+1)+a_s(Z_s(t+1)-c_s\sqrt{h_s(t+1)})^2\Big )\Big \}\Big ]. \end{aligned}$$

Using the fact that \(Ee^{a(Z+b)^2}=e^{-\frac{1}{2}\ln (1-2a)+\frac{ab^2}{1-2a}}\) with Z being a standard normal variable and some algebra shows that

$$\begin{aligned} A_0(t)&= \phi _1 r+A_0(t+1)+ w_m A_1(t+1)+w_sA_2(t+1)-\frac{1}{2}\ln (1-2a_mA_1(t+1))\\ \quad&-\frac{1}{2}\ln (1-2a_sA_2(t+1)),\\ A_1(t)&= b_mA_1(t+1)-\frac{1}{2}\phi _1\beta _s^2 +\phi _1\beta _sc_m-\frac{1}{2}c_m^2+\frac{\frac{1}{2}(\phi _1\beta _s-c_m)^2}{1-2a_mA_1(t+1)},\\ A_2(t)&= b_sA_2(t+1)-\frac{1}{2}\phi _1+\phi _1c_s-\frac{1}{2}c_s^2+\frac{\frac{1}{2}(\phi _1-c_s)^2}{1-2a_sA_2(t+1)}. \end{aligned}$$

Hence, \(A_0(t)\), \(A_1(t)\) and \(A_2(t)\) (\(j\le t\le T\)) can be obtained recursively with terminal conditions \(A_0(T)=A_1(T)=A_2(T)=0\) and the above expressions.

In what follows, we turn to the case \(t< j\). Applying the law of iterated expectations to f(t) yields that

$$\begin{aligned} f(t)&= E_{t}\Big [\exp \Big \{\phi _1 \ln S(T) +\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) \Big \}\Big ] \\ &= E_{t}\Big [E_{t+1} \Big [ \exp \Big \{\phi _1 \ln S(T) +\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) \Big \}\Big ]\Big ] \\ &= E_{t}\Big [f(t+1)\Big ] \\ &= E_{t}\Big [\exp \Big \{\phi _2\ln V(t+1) +\phi _4\sum _{k=1}^{t+1} \Lambda (k) +\phi _1\ln S(t+1)+B_0(t+1) \\ &\quad+B_1(t+1)h_m(t+2)+B_2(t+1)h_s(t+2)+B_3(t+1)h_v(t+2) + B_4(t+1)\Lambda (t+2)\Big \}\Big ]. \end{aligned}$$

Substituting the dynamics of \(\ln V(t+1)\), \(\Lambda (t+2)\), \(\ln S(t+1)\), \(h_m(t+2)\), \(h_s(t+2)\) and \(h_v(t+2)\) yields that

$$\begin{aligned} f(t)&= E_{t}\Big [\exp \Big \{\phi _2\ln V(t+1) +\phi _4\sum _{k=1}^{t+1} \Lambda (k) +\phi _1\ln S(t+1)+B_0(t+1) \\ &\quad+B_1(t+1)h_m(t+2)+B_2(t+1)h_s(t+2)+B_3(t+1)h_v(t+2)+ B_4(t+1)\Lambda (t+2)\Big \}\Big ]\\ &= E_t\Big [\exp \Big \{ \phi _2\ln V(t)+\phi _2 r-\frac{1}{2}\phi _2 h_v(t+1)+\phi _2\sqrt{h_v(t+1)}Z_v(t+1)\\&-\frac{1}{2}\phi _2\beta _v^2h_m(t+1)+\phi _2\beta _v\sqrt{h_m(t+1)}Z_m(t+1)+\phi _4\sum _{k=1}^{t+1} \Lambda (k)\\ &\quad +\phi _1\ln S(t)+\phi _1 r-\frac{1}{2}\phi _1 h_s(t+1)+\phi _1\sqrt{h_s(t+1)}Z_s(t+1) \\ &\quad-\frac{1}{2}\phi _1\beta _s^2h_m(t+1)+\phi _1\beta _s\sqrt{h_m(t+1)}Z_m(t+1)+ B _0(t+1)\\ \quad&+B_1(t+1)\Big (w_m+b_m h_m(t+1)+a_m(Z_m(t+1)-c_m\sqrt{h_m(t+1)})^2\Big )\\ &\quad+ B_2(t+1)\Big (w_s+b_s h_s(t+1)+a_s(Z_s(t+1)-c_s\sqrt{h_s(t+1)})^2\Big )\\ &\quad+B_3(t+1)\Big (w_v+b_v h_v(t+1)+a_v(Z_v(t+1)-c_v\sqrt{h_v(t+1)})^2\Big )\\ &\quad+ B_4(t+1)\Big (w_{\lambda }+b_{\lambda } \Lambda (t+1)+a_\lambda (Z_{m}(t+1))^2+ c_\lambda (Z_{v}(t+1))^2\Big )\Big \}\Big ]. \end{aligned}$$

Rearranging terms implies that

$$\begin{aligned} f(t)&= E_t\Big [\exp \Big \{ \phi _2\ln V(t)+\phi _4\sum _{k=1}^{t} \Lambda (k) +\phi _1\ln S(t)+ B _0(t+1)+ (\phi _2+\phi _1) r\\ &\quad+w_m B_1(t+1)+ w_sB_2(t+1)+w_vB_3(t+1)+w_{\lambda }B_4(t+1)\\ &\quad+(b_mB_1(t+1)-\frac{1}{2}\phi _2\beta _v^2-\frac{1}{2}\phi _1\beta _s^2) h_m(t+1)\\ &\quad+(b_vB_3(t+1)-\frac{1}{2}\phi _2) h_v(t+1)+(b_sB_2(t+1)-\frac{1}{2}\phi _1) h_s(t+1)\\ &\quad+ (b_{\lambda } B_4(t+1)+\phi _4)\Lambda (t+1) +\Phi _m+\Phi _s+\Phi _v\Big \}\Big ], \end{aligned}$$

where

$$\begin{aligned} \Phi _s&= \phi _1\sqrt{h_s(t+1)}Z_s(t+1)+a_sB_2(t+1)(Z_s(t+1)-c_s\sqrt{h_s(t+1)})^2,\\ \Phi _v&= \phi _2\sqrt{h_v(t+1)}Z_v(t+1)+a_v B_3(t+1)(Z_v(t+1)-c_v\sqrt{h_v(t+1)})^2\\ \quad&+c_\lambda B_4(t+1) (Z_{v}(t+1))^2,\\ \Phi _m&= (\phi _2\beta _v+ \phi _1\beta _s )\sqrt{h_m(t+1)}Z_m(t+1)+ a_mB_1(t+1)(Z_m(t+1)-c_m\sqrt{h_m(t+1)})^2 \\ &\quad+ a_\lambda B_4(t+1)(Z_{m}(t+1))^2. \end{aligned}$$

In order to obtain the explicit expression of f(t), we only need to calculate \(E_t[e^{\Phi _m+\Phi _s+\Phi _v}]=E_t[e^{\Phi _m}]E_t[e^{\Phi _s}]E_t[e^{\Phi _v}] \). Note that \(\Phi _s\), \(\Phi _m\) and \(\Phi _v\) have similar forms and all can be obtained based on the following form,

$$\begin{aligned} E[\exp \{ \mu _1 \sqrt{h}Z +\mu _2(Z-\mu _3\sqrt{h})^2+\mu _4Z^2\}], \end{aligned}$$

where \(\mu _1\), \(\mu _2\), \(\mu _3\) and \(\mu _4\) are all constants and Z is a standard normal variable. Using the fact that \(Ee^{a(Z+b)^2}=e^{-\frac{1}{2}\ln (1-2a)+\frac{ab^2}{1-2a}}\), we have that

$$\begin{aligned}&E[\exp \{ \mu _1 \sqrt{h}Z +\mu _2(Z-\mu _3\sqrt{h})^2+\mu _4Z^2\}] \\ &\quad= E[\exp \{ ( \mu _2 +\mu _4)Z^2-2(\mu _2\mu _3-\mu _1/2 ) Z\sqrt{h}+\mu _2\mu _3^2 h \}] \\ &\quad= E[\exp \{ ( \mu _2 +\mu _4)\Big ( Z- \frac{\mu _2\mu _3-\mu _1/2 }{\mu _2 +\mu _4}\sqrt{h}\Big )^2-\frac{(\mu _2\mu _3-\mu _1/2 )^2}{\mu _2 +\mu _4}h+\mu _2\mu _3^2 h \}] \\ &\quad= e^{\mu _2\mu _3^2h-\frac{(\mu _2\mu _3-\mu _1/2 )^2}{\mu _2 +\mu _4}h} E[\exp \{ ( \mu _2 +\mu _4)\Big ( Z- \frac{\mu _2\mu _3-\mu _1/2 }{\mu _2 +\mu _4}\sqrt{h}\Big )^2 \}] \\ &\quad= \exp \{ \mu _2\mu _3^2h-\frac{(\mu _2\mu _3-\mu _1/2 )^2}{\mu _2 +\mu _4}h-\frac{1}{2}\ln (1-2( \mu _2 +\mu _4 )) +\frac{( \mu _2 +\mu _4 )(\frac{\mu _2\mu _3-\mu _1/2 }{\mu _2 +\mu _4})^2}{1-2( \mu _2 +\mu _4 )}h \} \\ &\quad= \exp \{ -\frac{1}{2}\ln (1-2( \mu _2 +\mu _4 )) +\Big (\mu _2\mu _3^2-\frac{(\mu _2\mu _3-\mu _1/2 )^2}{\mu _2 +\mu _4} +\frac{( \mu _2 +\mu _4 )(\frac{\mu _2\mu _3-\mu _1/2 }{\mu _2 +\mu _4})^2}{1-2( \mu _2 +\mu _4 )}\Big )h \} \\ &\quad= \exp \{ -\frac{1}{2}\ln (1-2( \mu _2 +\mu _4 )) +\Big (\mu _2\mu _3^2 +\frac{2(\mu _2\mu _3-\mu _1/2 )^2}{1-2( \mu _2 +\mu _4 )}\Big )h \}. \end{aligned}$$
(A.1)

Therefore, we can write f(t) in the following form

$$\begin{aligned} f(t)&= \exp \Big \{\phi _2\ln V(t)+\phi _4\sum _{k=1}^{t} \Lambda (k) +\phi _1\ln S(t)+B_0(t) \\ &\quad+B_1(t)h_m(t+1)+B_2(t)h_s(t+1)+B_3(t)h_v(t+1)+B_4(t+1) \Lambda (t+1) \Big \}, \end{aligned}$$

where

$$\begin{aligned} B_0(t)&= B_0(t+1)+ (\phi _2+\phi _1) r +w_m B_1(t+1)+w_sB_2(t+1)+w_vB_3(t+1)+w_{\lambda }B_4(t+1)\\ &\quad-\frac{1}{2}\ln (1-2 (a_mB_1(t+1)+a_\lambda B_4(t+1) ))-\frac{1}{2}\ln (1-2 a_sB_2(t+1)))\\ &\quad-\frac{1}{2}\ln (1-2 (a_vB_3(t+1)+c_\lambda B_4(t+1) )),\\ B_1(t)&= b_mB_1(t+1)-\frac{1}{2}\phi _2\beta _v^2-\frac{1}{2}\phi _1\beta _s^2+ a_mc_m^2B_1(t+1)\\ &\quad+\frac{2(a_mc_mB_1(t+1)-(\phi _2\beta _v+ \phi _1\beta _s )/2)^2 }{1-2(a_mB_1(t+1)+a_\lambda B_4(t+1) )},\\ B_2(t)&= b_sB_2(t+1)-\frac{1}{2}\phi _1 + a_sc_s^2B_2(t+1)+\frac{2(a_sc_sB_2(t+1)- \phi _1/2)^2 }{1-2a_sB_2(t+1)},\\ B_3(t)&= b_vB_3(t+1)-\frac{1}{2}\phi _2+ a_vc_v^2B_3(t+1)+\frac{2(a_vc_vB_3(t+1)- \phi _2/2)^2 }{1-2(a_vB_3(t+1)+c_\lambda B_4(t+1) )},\\ B_4(t)&= b_{\lambda }B_4(t+1)+\phi _4. \end{aligned}$$

Now we need the terminal conditions of \(B_{k}(t),\ k=0,1,2,3,4\) (\(t< j\)). In other words, we need to determine the values of \(B_{k}(j-1),\ k=0,1,2,3,4\). Actually, we already have the expression of f(j) from the case \(j\le t\le T\) we previously considered,

$$\begin{aligned} f(j)&= \exp \Big \{\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) +\phi _1\ln S(j)+A_0(j)\\ &\quad+A_1(j)h_m(j+1)+A_2(j)h_s(j+1)\Big \}. \end{aligned}$$

According to the law of iterated expectations, we have that

$$\begin{aligned} f(j-1)&= E_{j-1}\Big [f(j)\Big ]\\= & {} E_{j-1}\Big [\exp \Big \{\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) +\phi _1\ln S(j)+A_0(j) \\ &\quad+A_1(j)h_m(j+1)+A_2(j)h_s(j+1)\Big \}\Big ]. \end{aligned}$$

Substituting the dynamics of \(\ln V(j)\), \(\ln S(j)\), \(h_m(j+1)\), and \(h_s(j+1)\) and using (A.1) imply that

$$\begin{aligned} f(j-1)&= E_{j-1}\Big [\exp \Big \{\phi _2\ln V(j) +\phi _3 \Lambda (j) +\phi _4\sum _{k=1}^{j-1} \Lambda (k) +\phi _1\ln S(j)+A_0(j) \\ &\quad+A_1(j)h_m(j+1)+A_2(j)h_s(j+1)\Big \}\Big ] \\ &= E_t\Big [\exp \Big \{ \phi _2\ln V(j-1)+\phi _2 r-\frac{1}{2}\phi _2 h_v(j)+\phi _2\sqrt{h_v(j)}Z_v(j)\\ &\quad-\frac{1}{2}\phi _2\beta _v^2h_m(j)+\phi _2\beta _v\sqrt{h_m(j)}Z_m(j)+\phi _3 \Lambda (j)+\phi _4\sum _{k=1}^{j-1} \Lambda (k)\\ &\quad+\phi _1\ln S(j-1)+\phi _1 r-\frac{1}{2}\phi _1 h_s(j)+\phi _1\sqrt{h_s(j)}Z_s(j)\\ &\quad-\frac{1}{2}\phi _1\beta _s^2h_m(j)+\phi _1\beta _s\sqrt{h_m(j)}Z_m(j)+ A_0(j)\\ &\quad+A_1(j)\Big (w_m+b_m h_m(j)+a_m(Z_m(j)-c_m\sqrt{h_m(j)})^2\Big )\\ &\quad+ A_2(j)\Big (w_s+b_s h_s(j)+a_s(Z_s(j)-c_s\sqrt{h_s(j)})^2\Big )\Big \}\Big ]\\ &= \exp \Big \{\phi _2\ln V(j-1)+\phi _4\sum _{k=1}^{j-1} \Lambda (k) +\phi _1\ln S(j-1)+B_0(j-1) \\ &\quad+B_1(j-1)h_m(j)+B_2(j-1)h_s(j)+B_3(j-1)h_v(j)+B_4(j-1) \Lambda (j) \Big \}, \end{aligned}$$

where

$$\begin{aligned} B_0(j-1)&= A_0(j)+ (\phi _2+\phi _1) r +w_m A_1(j)+w_sA_2(j)\\ &\quad-\frac{1}{2}\ln (1-2 a_mA_1(j))-\frac{1}{2}\ln (1-2 a_sA_2(j)),\\ B_1(j-1)&= b_mA_1(j)-\frac{1}{2}\phi _2\beta _v^2-\frac{1}{2}\phi _1\beta _s^2+ a_mc_m^2A_1(j) +\frac{2(a_mc_mA_1(j)-(\phi _2\beta _v+ \phi _1\beta _s )/2)^2 }{1-2a_mA_1(j)},\\ B_2(j-1)&= b_sA_2(j)-\frac{1}{2}\phi _1 + a_sc_s^2A_2(j)+\frac{2(a_sc_sA_2(j)- \phi _1/2)^2 }{1-2a_sA_2(j)},\\ B_3(j-1)&= -\frac{1}{2}\phi _2+\frac{1}{2}\phi _2^2,\\ B_4(j-1)&= \phi _3. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Proof of Theorem 2.2

First, we deal with the term \(E\Big [(S(T)-K)^+\Big ]\). Recall the definition of \(f(t;\phi _1,\phi _2,\phi _3,\phi _4)\) and note that \(f(0;i\phi _1,0,0,0)\) is the characteristic function of \(\ln S(T)\) under Q. From standard probability theory (see, e.g., Kendall and Stuart 1977), we can obtain the distribution function of \(\ln S(T)\), that is,

$$\begin{aligned} Q(\ln S(T)\le x)=\frac{1}{2}-\frac{1}{\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 x}f(0;i\phi _1,0,0,0)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1, \end{aligned}$$

which in turn implies that

$$\begin{aligned} Q(\ln S(T)\ge x)&= 1- Q(\ln S(T)\le x) \\ &= \frac{1}{2}+\frac{1}{\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 x}f(0;i\phi _1,0,0,0)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1. \end{aligned}$$
(A.2)

The term \(E\Big [(S(T)-K)^+\Big ]\) can be derived after introducing a new probability measure \(Q_1\) defined by

$$\begin{aligned} Q_1(O)=\frac{E\Big [I(O)S(T)\Big ]}{E\Big [S(T)\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\). Obviously, the characteristic function of \(\ln S(T)\) under \(Q_1\) is given by

$$\begin{aligned} E^{Q_1}\Big [e^{i\phi _1 \ln S(T)}\Big ]= \frac{f(0;1+i\phi _1,0,0,0)}{f(0;1,0,0,0)}. \end{aligned}$$

In addition, under \(Q_1\), it holds that

$$\begin{aligned} Q_1(\ln S(T)\ge x)= & {} \frac{1}{2}+\frac{1}{\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 x}f(0;1+i\phi _1,0,0,0)/f(0;1,0,0,0)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1. \end{aligned}$$
(A.3)

Hence, (A.2) and (A.3) imply that

$$\begin{aligned} E\Big [(S(T)-K)^+\Big ]&= E\Big [(S(T)-K)^+\Big ] \\ &= E\Big [(S(T)-K)I(\ln S(T)\ge \ln K)\Big ]\\ &= E\Big [S(T)I(\ln S(T)\ge \ln K)\Big ] -K E\Big [I(\ln S(T)\ge \ln K)\Big ] \\ &= E[S(T)] E^{Q_1}\Big [I(\ln S(T)\ge \ln K)\Big ] -K E\Big [I(\ln S(T)\ge \ln K)\Big ] \\ &= E[S(T)]Q_1(\ln S(T)\ge \ln K) -K Q(\ln S(T)\ge \ln K) \Big ) \\ &= \frac{1}{2}f(0;1,0,0,0)+\frac{1}{\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;1+i\phi _1,0,0,0)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad- \frac{K}{2}-\frac{K}{\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1,0,0,0)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1, \end{aligned}$$
(A.4)

where in the last equality we used (A.2) and (A.3).

Next, we focus on the term \(E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L) (S(T)-K)^+ \Big ]\). We rewrite it as follows:

$$\begin{aligned}&E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L) (S(T)-K)^+ \Big ]\\ &\quad= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}I( V(j)<L, \ln S(T)\ge \ln K)\Big ] \\ &\quad-K E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L, \ln S(T)\ge \ln K)\Big ] \\ &= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\quad-K E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( -\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ]. \end{aligned}$$

In the following, we deal with the two parts in the above equality separately. To this end, we define a new probability measure

$$\begin{aligned} Q_2(O)=\frac{E\Big [I(O)e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\). Under \(Q_2\), we have the joint characteristic function of \(-\ln V(j)\) and \(\ln S(T)\) as follows:

$$\begin{aligned} E^{Q_2}\Big [e^{i\phi _2(-\ln V(j))+ i\phi _1\ln S(T)}\Big ]&= E\Big [ \frac{e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]} e^{i\phi _2(-\ln V(j))+ i\phi _1\ln S(T)}\Big ] \\ &= \frac{1}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]} E\Big [e^{(i\phi _1+1)\ln S(T) -i\phi _2\ln V(j)-\sum _{k=1}^{j} \Lambda (k) }\Big ] \\ &= \frac{f(0;i\phi _1+1,-i\phi _2,-1,-1)}{f(0;1,0,-1,-1)}. \end{aligned}$$

By inverting the characteristic function, we have that

$$\begin{aligned} \Pi _{j,1}:= & {} E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\= & {} E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]E^{Q_2}\Big [I(-\ln V(j)>-\ln L, \ln S(T)\ge \ln K)\Big ]\nonumber \\= & {} f(0;1,0,-1,-1)Q_2\Big (-\ln V(j)> -\ln L, \ln S(T)\ge \ln K\Big )\nonumber \\= & {} \frac{1}{4}f(0;1,0,-1,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1+1,0,-1,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1\nonumber \\&\ +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;1,-i\phi _2,-1,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2\nonumber \\&\ -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1+1,-i\phi _2,-1,-1)}{ \phi _1 \phi _2}\Big ]\nonumber \\&\ -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1+1,i\phi _2,-1,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(A.5)

Likewise, we work under \(\bar{Q}_2\) defined by

$$\begin{aligned} \bar{Q}_2(O)=\frac{E\Big [I(O)e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\), and obtain that

$$\begin{aligned} \Pi _{j,2}&:= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &= f(0;0,0,-1,-1)\bar{Q}_2\Big (-\ln V(j)> -\ln L, \ln S(T)\ge \ln K\Big ) \\ &= \frac{1}{4}f(0;0,0,-1,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1,0,-1,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;0,-i\phi _2,-1,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1,-i\phi _2,-1,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1,i\phi _2,-1,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(A.6)

Hence, it holds that

$$\begin{aligned}&E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L) (S(T)-K)^+ \Big ]\\ \quad= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\qquad-K E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( -\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\quad= \Pi _{j,1} -K\Pi _{j,2}. \end{aligned}$$

Similarly,

$$\begin{aligned}&E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}I( V(j)<L) (S(T)-K)^+ \Big ]\\ \quad&= E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)+\ln S(T)}I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\qquad-K E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}I( -\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\quad= \Pi _{j,3} -K\Pi _{j,4}, \end{aligned}$$

where

$$\begin{aligned} \Pi _{j,3}&:= \frac{1}{4}f(0;1,0,0,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1+1,0,0,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;1,-i\phi _2,0,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1+1,-i\phi _2,0,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1+1,i\phi _2,0,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2, \end{aligned}$$
(A.7)

and

$$\begin{aligned} \Pi _{j,4}&:= \frac{1}{4}f(0;0,0,0,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1,0,0,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;0,-i\phi _2,0,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1,-i\phi _2,0,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1,i\phi _2,0,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(A.8)

Note that \(\Pi _{j,3}\) and \(\Pi _{j,4}\) have similar forms as \(\Pi _{j,1}\) and \(\Pi _{j,2}\), and they can be obtained by replacing \(f(0;\cdot ,\cdot ,-1,\cdot )\) in \(\Pi _{j,1}\) and \(\Pi _{j,2}\) with \(f(0;\cdot ,\cdot ,0,\cdot )\), respectively.

We next calculate \(E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L) V(j) (S(T)-K)^+ \Big ]\). Note that \(E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}I( V(j)<L) V(j) (S(T)-K)^+ \Big ]\) can be calculated in a similar way. To this end, define another probability measure \(Q_3\) as follows:

$$\begin{aligned} Q_3(O)=\frac{E\Big [I(O)e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\). The joint characteristic function of \(-\ln V(j)\) and \(\ln S(T)\) under \(Q_3\) is

$$\begin{aligned} E^{Q_3}\Big [e^{i\phi _2(-\ln V(j))+ i\phi _1\ln S(T)}\Big ]&= E\Big [ \frac{e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]} e^{i\phi _2(-\ln V(j))+ i\phi _1\ln S(T)}\Big ] \\ &= \frac{f(0;i\phi _1+1,-i\phi _2+1,-1,-1)}{f(0;1,1,-1,-1)}. \end{aligned}$$

By inverting the characteristic function, we obtain that

$$\begin{aligned} \Pi _{j,5}&:= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)}V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]E^{Q_3}\Big [I(-\ln V(j)>-\ln L, \ln S(T)\ge \ln K)\Big ] \\ &= \frac{1}{4}f(0;1,1,-1,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1+1,1,-1,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;1,-i\phi _2+1,-1,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1+1,-i\phi _2+1,-1,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1+1,i\phi _2+1,-1,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2, \end{aligned}$$
(A.9)

and

$$\begin{aligned} \Pi _{j,6}&:= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln V(j)}\Big ]E^{\bar{Q}_3}\Big [I(-\ln V(j)>-\ln L, \ln S(T)\ge \ln K)\Big ] \\ &= \frac{1}{4}f(0;0,1,-1,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1,1,-1,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1 \\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;0,-i\phi _2+1,-1,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1,-i\phi _2+1,-1,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1,i\phi _2+1,-1,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2, \end{aligned}$$
(A.10)

where \(\bar{Q}_3(O)\) is defined by

$$\begin{aligned} \bar{Q}_3(O)=\frac{E\Big [I(O)e^{-\sum _{k=1}^{j} \Lambda (k)+\ln V(j)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln V(j)}\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\). Therefore, we have that

$$\begin{aligned}&E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)}I( V(j)<L) V(j) (S(T)-K)^+ \Big ] \\ &\quad= E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)} V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\quad -K E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)} V(j)I( -\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ]\\ &= \Pi _{j,5} -K\Pi _{j,6}. \end{aligned}$$

Finally, we calculate \(E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}I( V(j)<L) V(j) (S(T)-K)^+ \Big ]\) under \(Q_4\) and \(\bar{Q}_4\) defined by

$$\begin{aligned} Q_4(O)&= \frac{E\Big [I(O)e^{-\sum _{k=1}^{j-1} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln S(T)+\ln V(j)}\Big ]},\\ \bar{Q}_4(O)&= \frac{E\Big [I(O)e^{-\sum _{k=1}^{j-1} \Lambda (k)+\ln V(j)}\Big ]}{E\Big [e^{-\sum _{k=1}^{j} \Lambda (k)+\ln V(j)}\Big ]}, \end{aligned}$$

for any event \(O\in \mathscr {F}_{T}\). Following along similar arguments we obtain

$$\begin{aligned}&E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}I( V(j)<L) V(j) (S(T)-K)^+ \Big ] \\ &= E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)+\ln S(T)} V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &\quad-K E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)} V(j)I( -\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ]\\ &= \Pi _{j,7} -K\Pi _{j,8}, \end{aligned}$$

where

$$\begin{aligned} \Pi _{j,7}&:= E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)+\ln S(T)}V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ] \\ &=\frac{1}{4}f(0;1,1,0,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1+1,1,0,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1\\ &\quad +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;1,-i\phi _2+1,0,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2 \\ &\quad -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1+1,-i\phi _2+1,0,-1)}{ \phi _1 \phi _2}\Big ] \\ &\quad -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1+1,i\phi _2+1,0,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(A.11)

and

$$\begin{aligned} \Pi _{j,8}:= & {} E\Big [e^{-\sum _{k=1}^{j-1} \Lambda (k)}V(j)I(-\ln V(j)> -\ln L, \ln S(T)\ge \ln K)\Big ]\nonumber \\= & {} \frac{1}{4}f(0;0,1,0,-1)+\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K}f(0;i\phi _1,1,0,-1)}{ i\phi _1 }\Big ]{\mathrm {d}}\phi _1\nonumber \\&\ +\frac{1}{2\pi }\int _{0}^\infty \mathrm{Re}\Big [\frac{e^{i \phi _2 \ln L}f(0;0,-i\phi _2+1,0,-1)}{ i\phi _2 }\Big ]{\mathrm {d}}\phi _2\nonumber \\&\ -\frac{1}{2\pi ^2}\int _{0}^\infty \int _0^\infty \Big (\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K+i \phi _2 \ln L}f(0;i\phi _1,-i\phi _2+1,0,-1)}{ \phi _1 \phi _2}\Big ]\nonumber \\&\ -\mathrm{Re}\Big [\frac{e^{-i \phi _1 \ln K-i \phi _2 \ln L}f(0;i\phi _1,i\phi _2+1,0,-1)}{ \phi _1 \phi _2}\Big ]\Big ){\mathrm {d}}\phi _1{\mathrm {d}}\phi _2. \end{aligned}$$
(A.12)

Note that \(\Pi _{j,7}\) and \(\Pi _{j,8}\) can be obtained by replacing \(f(0;\cdot ,\cdot ,-1,\cdot )\) in \(\Pi _{j,5}\) and \(\Pi _{j,6}\) with \(f(0;\cdot ,\cdot ,0,\cdot )\), respectively. This completes the proof of the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Wang, X. Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes. Rev Deriv Res 24, 1–30 (2021). https://doi.org/10.1007/s11147-020-09167-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-020-09167-z

Keywords

JEL Classification

Navigation