Skip to main content
Log in

Pricing exotic options in a regime switching economy: a Fourier transform method

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

This article considers the valuation of digital, barrier, and lookback options in a Markovian, regime-switching, Black–Scholes model. In Fourier space, integral representations for the option prices are derived via the theory on matrix Wiener–Hopf factorizations. Our main focus is on the 2-state case where the matrix Wiener–Hopf factorization is available analytically. A comparison to several numerical alternatives (analytical approximations, the Brownian bridge algorithm and a finite element scheme) demonstrates that the pricing formulas are easy to implement and lead to accurate price estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. (Numerical) solutions to the (matrix) Wiener–Hopf factorization are possible in more general model settings [see, among others, Boyarchenko and Levendorskiĭ (2008), Jiang and Pistorius (2008), Kudryavtsev and Levendorskiĭ (2012), Mijatović and Pistorius (2013)].

  2. An intensity matrix has negative diagonal and non-negative off-diagonal entries. Each row sums up to zero.

  3. Note that in the single barrier case there might be a positive probability that the barrier is never hit. In this case, \(f_{a,\,-\infty }(t,\pi _0)\) is still a density if the probability of never hitting the barrier is attributed to \(t=\infty \).

  4. We denote by \(\mathcal {Q}_M\) the class of irreducible \(M\times M\) generator matrices (non-negative off-diagonal entries and non-positive row sums).

  5. This contains the implicit assumption that the eigenvectors \(v_i\) form a basis, an assumption that turned out to be sufficient in practical applications [see, e.g., Rogers and Shi (1994)]. It is possible to construct artificial examples where such a basis does not exist. The following steps of Algorithm 1 can then be modified using a basis of Jordan vectors.

  6. In the Black–Scholes model with volatility \(\sigma \), option prices for digital and lookback options are given by [see, for e.g., Reiner and Rubinstein (1991)]

    $$\begin{aligned} \overline{\mathcal {D}}(S_0,T,\varvec{\pi }_{\varvec{0}})&= \Phi \Bigg ( \frac{\ln (B/S_0) - \big (r-\sigma ^2/2\big )T}{\sigma \sqrt{T}} \Bigg ) - e^{ \big (\frac{2r}{\sigma ^2}-1\big )\ln (S_0/K)}\, \Phi \Bigg ( \frac{\ln (B/S_0) + \big (r-\sigma ^2/2\big )T}{\sigma \sqrt{T}} \Bigg ),\\ \overline{\mathcal {L}}(S_0,T,\varvec{\pi }_{\varvec{0}})&= S_0\,e^{-rt} \Big ( 1 - \frac{\sigma ^2}{2r} \Big )\, \Phi \Bigg ( \frac{\big (-r+\sigma ^2/2\big )T}{\sigma \sqrt{T}} \Bigg ) + S_0 \Big ( 1 + \frac{\sigma ^2}{2r} \Big )\, \Phi \Bigg ( \frac{\big (-r-\sigma ^2/2\big )T}{\sigma \sqrt{T}} \Bigg ), \end{aligned}$$

    where \(B:=\exp (b)\).

References

  • Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions. New York: Dover Publications Inc.

    Google Scholar 

  • Ang, A., & Bekaert, G. (2002). Regime switches in interest rates. Journal of Business & Economic Statistics, 20(2), 163–182.

    Article  Google Scholar 

  • Asmussen, S. (1995). Stationary distributions for fluid flow models with or without Brownian noise. Communications in Statistics. Stochastic models, 11(1), 21–49.

    Article  Google Scholar 

  • Barlow, M. T., Rogers, L. C. G., & Williams, D. (1990). Wiener–Hopf factorization for matrices. Lecture Notes in Mathematics, 784, 324–331.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Boyarchenko, S., & Levendorskiĭ, S. (1998). On rational pricing of derivative securities for a family of non-Gaussian processes. Institut für Mathematik, Universität Potsdam. http://opus.kobv.de/ubp/volltexte/2008/2519/.

  • Boyarchenko, S., & Levendorskiĭ, S. (2008). Exit problems in regime-switching models. Journal of Mathematical Economics, 44, 180–206.

    Article  Google Scholar 

  • Boyle, P., & Draviam, T. (2007). Pricing exotic options under regime switching. Insurance: Mathematics and Economics, 40, 267–282.

    Google Scholar 

  • Buffington, J., & Elliott, R. J. (2002). American options with regime switching. International Journal of Theoretical and Applied Finance, 5, 497–514.

    Article  Google Scholar 

  • Carr, P., & Madan, D. B. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Chan, L., & Zhu, S.-P. (2015). An explicit analytic formula for pricing barrier options with regime switching. Mathematics and Financial Economics, 9(1), 29–37.

    Article  Google Scholar 

  • Chen, S.-S. (2009). Predicting the bear stock market: Macroeconomic variables as leading indicators. Journal of Banking & Finance, 33, 211–223.

    Article  Google Scholar 

  • Choi, S. (2009). Regime-switching univariate diffusion models of the short-term interest rate. Studies in Nonlinear Dynamics & Econometrics, 13, 1–41.

    Article  Google Scholar 

  • De Olivera, F., & Mordecki, E. (2016). Computing Greeks for Lévy models: The Fourier transform approach. In A. Pinto, E. Accinelli Gamba, A. Yannacopoulos, & C. Hervés-Beloso (Eds.), Trends in Mathematical Economics (pp. 99–121). Springer International Publishing.

  • Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423–432.

    Article  Google Scholar 

  • Elliott, R. J., Siu, T. K., & Chan, L. (2014). On pricing barrier options with regime switching. Journal of Computational and Applied Mathematics, 256, 196–210.

    Article  Google Scholar 

  • Eloe, P., Liu, R. H., & Sun, J. Y. (2009). Double barrier option under regime-switching exponential mean-reverting process. International Journal of Computer Mathematics, 86(6), 964–981.

    Article  Google Scholar 

  • Erlwein, C., & Mamon, R. (2009). An online estimation scheme for a Hull–White model with HMM-driven parameters. Statistical Methods and Applications, 18(1), 87–107.

    Article  Google Scholar 

  • Escobar, M., Hieber, P., & Scherer, M. (2014). Efficiently pricing barrier derivatives in stochastic volatility models. Review of Derivatives Research, 17(2), 191–216.

    Article  Google Scholar 

  • Guo, X. (2001a). When the “Bull” meets the “Bear”—A first passage time problem for a hidden Markov process. Methodology and Computing in Applied Probability, 3(2), 135–143.

    Article  Google Scholar 

  • Guo, X. (2001b). An explicit solution to an optimal stopping problem with regime switching. Journal of Applied Probability, 38, 464–481.

    Article  Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Article  Google Scholar 

  • Hardy, M. R. (2001). A regime-switching model of long-term stock returns. North American Actuarial Journal, 3, 185–211.

    Google Scholar 

  • Henry, O.-T. (2009). Regime switching in the relationship between equity returns and short-term interest rates in the UK. Journal of Banking and Finance, 33, 406–416.

    Article  Google Scholar 

  • Hieber, P. (2014a). First-passage times of regime switching models. Statistics & Probability Letters, 92, 148–157.

    Article  Google Scholar 

  • Hieber, P. (2014b). A correction note on: When the “Bull” meets the “Bear”—A first passage time problem for a hidden Markov process. Methodology and Computing in Applied Probability, 16(3), 771–776.

    Article  Google Scholar 

  • Hieber, P., & Scherer, M. (2010). Efficiently pricing barrier options in a Markov-switching framework. Journal of Computational and Applied Mathematics, 235, 679–685.

    Article  Google Scholar 

  • Jiang, Z., & Pistorius, M. R. (2008). On perpetual American put valuation and first-passage in a regime-switching model with jumps. Finance and Stochastics, 12(3), 331–355.

    Article  Google Scholar 

  • Kennedy, J., & Williams, D. (1990). Probabilistic factorization of a quadratic matrix polynomial. Mathematical Proceedings of the Cambridge Philosophical Society, 107, 591–600.

    Article  Google Scholar 

  • Kim, M. A., Jang, B.-G., & Lee, H.-S. (2008). A first-passage-time model under regime-switching market environment. Journal of Banking & Finance, 32, 2617–2627.

    Article  Google Scholar 

  • Kudryavtsev, O., & Levendorskiĭ, S. (2012). Fast and accurate pricing of barrier options under Lévy processes. Finance and Stochastics, 13(4), 531–562.

    Article  Google Scholar 

  • Lo, C. F., Lee, H. C., & Hui, C. H. (2003). A simple approach for pricing barrier options with time-dependent parameters. Quantitative Finance, 3, 98–107.

    Article  Google Scholar 

  • London, R. R., McKean, H. P., Rogers, L. C. G., & Williams, D. (1982). A martingale approach to some Wiener–Hopf problems. Lecture Notes in Mathematics, 920, 68–90.

    Article  Google Scholar 

  • Metwally, S., & Atiya, A. (2002). Using Brownian bridge for fast simulation of jump-diffusion processes and barrier options. Journal of Derivatives, 10, 43–54.

    Article  Google Scholar 

  • Mijatović, A., & Pistorius, M. (2013). Continuously monitored barrier options under Markov process. Mathematical Finance, 23(1), 1–38.

    Article  Google Scholar 

  • Naik, V. (1993). Option valuation and hedging strategies with jumps in the volatility of asset returns. Journal of Finance, 48(5), 1969–1984.

    Article  Google Scholar 

  • Raible, S. (2000). Lévy processes in finance: Theory, numerics, and empirical facts. PhD thesis, Freiburg University.

  • Reiner, E., & Rubinstein, M. (1991). Breaking down the barriers. Risk, 4(8), 28–35.

    Google Scholar 

  • Rogers, L. C. G. (1994). Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. Annals of Applied Probability, 4(2), 390–413.

    Article  Google Scholar 

  • Rogers, L. C. G., & Shi, Z. (1994). Computing the invariant law of a fluid model. Journal of Applied Probability, 31(4), 885–896.

    Article  Google Scholar 

Download references

Acknowledgements

I want to thank the editor and the anonymous referees for valuable comments that helped to improve earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hieber.

Additional information

This research was carried out while Peter Hieber was a research assistant at TU Munich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieber, P. Pricing exotic options in a regime switching economy: a Fourier transform method. Rev Deriv Res 21, 231–252 (2018). https://doi.org/10.1007/s11147-017-9139-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-017-9139-1

Keywords

JEL Classification

Navigation