Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 21, 2020

Measuring evolutionary cancer dynamics from genome sequencing, one patient at a time

  • Giulio Caravagna ORCID logo EMAIL logo

Abstract

Cancers progress through the accumulation of somatic mutations which accrue during tumour evolution, allowing some cells to proliferate in an uncontrolled fashion. This growth process is intimately related to latent evolutionary forces moulding the genetic and epigenetic composition of tumour subpopulations. Understanding cancer requires therefore the understanding of these selective pressures. The adoption of widespread next-generation sequencing technologies opens up for the possibility of measuring molecular profiles of cancers at multiple resolutions, across one or multiple patients. In this review we discuss how cancer genome sequencing data from a single tumour can be used to understand these evolutionary forces, overviewing mathematical models and inferential methods adopted in field of Cancer Evolution.


Corresponding author: Giulio Caravagna, Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12/1, 34127, Trieste, Italy, E-mail:

Acknowledgments

I wish to thank Guido Sanguinetti for inviting me to write this review, and Marc Williams for useful discussions on branching process modelling.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Børresen-Dale, A.-L., et al.. (2013). Signatures of mutational processes in human cancer. Nature 500: 415–421, https://doi.org/10.1038/nature12477.Search in Google Scholar PubMed PubMed Central

Antal, T. and Krapivsky, P. (2010). Exact solution of a two-type branching process: clone size distribution in cell division kinetics. J. Stat. Mech. Theor. Exp. 2010: P07028, https://doi.org/10.1088/1742-5468/2010/07/p07028.Search in Google Scholar

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C., Buettner, F., Huber, W., and Stegle, O. (2018). Multi-omics factor analysis a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14: e8124, https://doi.org/10.15252/msb.20178124.Search in Google Scholar PubMed PubMed Central

Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni, J.C., and Stegle, O. (2020). Mofa+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21: 1–17, https://doi.org/10.1186/s13059-020-02015-1.Search in Google Scholar PubMed PubMed Central

Bailey, N.T. (1990). The elements of stochastic processes with applications to the natural sciences, 25. John Wiley & Sons, New York.Search in Google Scholar

Beerenwinkel, N., Eriksson, N., and Sturmfels, B. (2007). Conjunctive Bayesian networks. International Statistical Institute (ISI) and the Bernoulli Society for Mathematical Statistics and Probability, JSTOR, pp. 893–909.10.3150/07-BEJ6133Search in Google Scholar

Beerenwinkel, N., Schwarz, R.F., Gerstung, M., and Markowetz, F. (2015). Cancer evolution: mathematical models and computational inference. Syst. Biol. 64: e1–e25, https://doi.org/10.1093/sysbio/syu081.Search in Google Scholar PubMed PubMed Central

Berglund, E., Maaskola, J., Schultz, N., Friedrich, S., Marklund, M., Bergenstråhle, J., Tarish, F., Tanoglidi, A., Vickovic, S., Larsson, L., et al.. (2018). Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9: 1–13, https://doi.org/10.1038/s41467-018-04724-5.Search in Google Scholar PubMed PubMed Central

Bi, W.L., Hosny, A., Schabath, M.B., Giger, M.L., Birkbak, N.J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I.F., et al.. (2019). Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin. 69: 127–157.10.3322/caac.21552Search in Google Scholar PubMed PubMed Central

Bishop, C.M. (2006). Pattern recognition and machine learning. Springer, New York.Search in Google Scholar

Burgess, D.J. (2019). Spatial transcriptomics coming of age. Nat. Rev. Genet. 20: 317, https://doi.org/10.1038/s41576-019-0129-z.Search in Google Scholar PubMed

Campbell, K.R., Steif, A., Laks, E., Zahn, H., Lai, D., McPherson, A., Farahani, H., Kabeer, F., O’Flanagan, C., Biele, J., et al.. (2019). Clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 20: 1–12, https://doi.org/10.1186/s13059-019-1645-z.Search in Google Scholar PubMed PubMed Central

Caravagna, G., Graudenzi, A., Ramazzotti, D., Sanz-Pamplona, R., De Sano, L., Mauri, G., Moreno, V., Antoniotti, M., and Mishra, B. (2016). Algorithmic methods to infer the evolutionary trajectories in cancer progression. PNAS 113: E4025–E4034, https://doi.org/10.1073/pnas.1520213113.Search in Google Scholar PubMed PubMed Central

Caravagna, G., Giarratano, Y., Ramazzotti, D., Tomlinson, I., Graham, T.A., Sanguinetti, G., and Sottoriva, A. (2018). Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15: 707, https://doi.org/10.1038/s41592-018-0108-x.Search in Google Scholar PubMed PubMed Central

Caravagna, G., Heide, T., Williams, M.J., Zapata, L., Nichol, D., Chkhaidze, K., Cross, W., Cresswell, G.D., Werner, B., Acar, A., et al.. (2020). Subclonal reconstruction of tumors by using machine learning and population genetics. Nat. Genet. 52: 898–907, https://doi.org/10.1038/s41588-020-0675-5.Search in Google Scholar PubMed PubMed Central

Chappell, L., Russell, A.J., and Voet, T. (2018). Single-cell (multi) omics technologies. Annu. Rev. Genom. Hum. Genet. 19: 15–41, https://doi.org/10.1146/annurev-genom-091416-035324.Search in Google Scholar PubMed

Chkhaidze, K., Heide, T., Werner, B., Williams, M.J., Huang, W., Caravagna, G., Graham, T.A., and Sottoriva, A. (2019). Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Comput. Biol. 15: e1007243, https://doi.org/10.1371/journal.pcbi.1007243.Search in Google Scholar PubMed PubMed Central

Christopher, M.J., Petti, A.A., Rettig, M.P., Miller, C.A., Chendamarai, E., Duncavage, E.J., Klco, J.M., Helton, N.M., O’Laughlin, M., Fronick, C.C., et al.. (2018). Immune escape of relapsed AML cells after allogeneic transplantation. NEJM 379: 2330–2341, https://doi.org/10.1056/nejmoa1808777.Search in Google Scholar PubMed PubMed Central

Colomé-Tatché, M. and Theis, F.J. (2018). Statistical single cell multi-omics integration. Curr. Opin. Syst. Biol. 7: 54–59, https://doi.org/10.1016/j.coisb.2018.01.003.Search in Google Scholar

Dentro, S.C., Wedge, D., and Van Loo, P. (2017). Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7: a026625, https://doi.org/10.1101/cshperspect.a026625.Search in Google Scholar PubMed PubMed Central

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., Del Angel, G., Rivas, M.A., Hanna, M., et al.. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43: 491, https://doi.org/10.1038/ng.806.Search in Google Scholar PubMed PubMed Central

Deshwar, A.G., Vembu, S., Yung, C.K., Jang, G.H., Stein, L., and Morris, Q. (2015). Phylowgs: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16: 1–20, https://doi.org/10.1186/s13059-015-0602-8.Search in Google Scholar PubMed PubMed Central

Diaz-Uriarte, R. (2018). Cancer progression models and fitness landscapes: a many-to-many relationship. Bioinformatics 34: 836–844, https://doi.org/10.1093/bioinformatics/btx663.Search in Google Scholar PubMed PubMed Central

Diaz-Uriarte, R. and Vasallo, C. (2019). Every which way? On predicting tumor evolution using cancer progression models. PLoS Comput. Biol. 15: e1007246, https://doi.org/10.1371/journal.pcbi.1007246.Search in Google Scholar PubMed PubMed Central

Durrett, R. (2002). Basic models. In: Probability models for DNA sequence evolution. Springer, New York, pp. 1–66.10.1007/978-1-4757-6285-3_1Search in Google Scholar

Ewens, W.J. (2012). Mathematical population genetics 1: theoretical introduction, 27. Springer Science & Business Media, New York.Search in Google Scholar

Fusco, D., Gralka, M., Kayser, J., Anderson, A., and Hallatschek, O. (2016). Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7: 12760, https://doi.org/10.1038/ncomms12760.Search in Google Scholar PubMed PubMed Central

Gatenby, R.A., Silva, A.S., Gillies, R.J., and Frieden, B.R. (2009). Adaptive therapy. Canc. Res. 69: 4894–4903, https://doi.org/10.1158/0008-5472.can-08-3658.Search in Google Scholar

Gawad, C., Koh, W., and Quake, S.R. (2016). Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17: 175, https://doi.org/10.1038/nrg.2015.16.Search in Google Scholar PubMed

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81: 2340–2361, https://doi.org/10.1021/j100540a008.Search in Google Scholar

Greaves, M. and Maley, C.C. (2012). Clonal evolution in cancer. Nature 481: 306–313, https://doi.org/10.1038/nature10762.Search in Google Scholar PubMed PubMed Central

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., et al.. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158, https://doi.org/10.1038/nature05610.Search in Google Scholar PubMed PubMed Central

Heide, T. (2020). The TEMULATOR package to generate synthetic tumour sequencing data, Webpage. https://github.com/T-Heide/TEMULATOR (Accessed 6 December 2020).Search in Google Scholar

Househam, J., Cross, W.C., and Caravagna, G. (2021). An automated quality checking tool for clonal copy number changes and single nucleotide variant calls from whole genome sequencing data. In preparation.Search in Google Scholar

Kessler, D.A. and Levine, H. (2013). Large population solution of the stochastic Luria–Delbrück evolution model. PNAS 110: 11682–11687, https://doi.org/10.1073/pnas.1309667110.Search in Google Scholar PubMed PubMed Central

Kessler, D.A. and Levine, H. (2015). Scaling solution in the large population limit of the general asymmetric stochastic Luria–Delbrück evolution process. J. Stat. Phys. 158: 783–805, https://doi.org/10.1007/s10955-014-1143-3.Search in Google Scholar PubMed PubMed Central

Khan, K.H., Cunningham, D., Werner, B., Vlachogiannis, G., Spiteri, I., Heide, T., Mateos, J.F., Vatsiou, A., Lampis, A., Damavandi, M.D., et al.. (2018). Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Canc. Discov. 8: 1270–1285, https://doi.org/10.1158/2159-8290.cd-17-0891.Search in Google Scholar

Kimura, M. (1994). Population genetics, molecular evolution, and the neutral theory: selected papers. University of Chicago Press, Chicago, IL, United States.Search in Google Scholar

Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Robinson, M.D., Vallejos, C.A., Campbell, K.R., Beerenwinkel, N., Mahfouz, A., et al.. (2020). Eleven grand challenges in single-cell data science. Genome Biol. 21: 1–35, https://doi.org/10.1186/s13059-020-1926-6.Search in Google Scholar PubMed PubMed Central

Lakatos, E., Williams, M.J., Schenck, R.O., Cross, W.C., Househam, J., Zapata, L., Werner, B., Gatenbee, C., Robertson-Tessi, M., Barnes, C.P., et al.. (2020). Evolutionary dynamics of neoantigens in growing tumors. Nat. Genet. 52: 1057–1066, https://doi.org/10.1038/s41588-020-0687-1.Search in Google Scholar PubMed PubMed Central

Macaulay, I.C., Ponting, C.P., and Voet, T. (2017). Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33: 155–168, https://doi.org/10.1016/j.tig.2016.12.003.Search in Google Scholar PubMed PubMed Central

Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies, H., Stratton, M.R., and Campbell, P.J. (2017). Universal patterns of selection in cancer and somatic tissues. Cell 171: 1029–1041, https://doi.org/10.1016/j.cell.2017.09.042.Search in Google Scholar PubMed PubMed Central

McGranahan, N. and Swanton, C. (2017). Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168: 613–628, https://doi.org/10.1016/j.cell.2017.01.018.Search in Google Scholar PubMed

Milite, S. and Caravagna, G. (2021). Genotyping copy number alterations from single-cell RNA sequencing of cancer cells. In preparation.Search in Google Scholar

Miller, C.A., White, B.S., Dees, N.D., Griffith, M., Welch, J.S., Griffith, O.L., Vij, R., Tomasson, M.H., Graubert, T.A., Walter, M.J., et al.. (2014). Sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10: e1003665, https://doi.org/10.1371/journal.pcbi.1003665.Search in Google Scholar PubMed PubMed Central

Moncada, R., Wagner, F., Chiodin, M., Devlin, J.C., Baron, M., Hajdu, C.H., Simeone, D.M., and Yanai, I. (2018). Building a tumor atlas: integrating single-cell RNA-Seq data with spatial transcriptomics in pancreatic ductal adenocarcinoma. bioRxiv 254375, https://doi.org/10.1101/254375.Search in Google Scholar

Nam, A.S., Chaligne, R., and Landau, D.A. (2021). Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22: 3–18, https://doi.org/10.1038/s41576-020-0265-5.Search in Google Scholar PubMed PubMed Central

Navin, N.E. (2015). The first five years of single-cell cancer genomics and beyond. Genome Res. 25: 1499–1507, https://doi.org/10.1101/gr.191098.115.Search in Google Scholar PubMed PubMed Central

Nik-Zainal, S., Van Loo, P., Wedge, D.C., Alexandrov, L.B., Greenman, C.D., Lau, K.W., Raine, K., Jones, D., Marshall, J., Ramakrishna, M., et al.. (2012). The life history of 21 breast cancers. Cell 149: 994–1007, https://doi.org/10.1016/j.cell.2012.04.023.Search in Google Scholar PubMed PubMed Central

Nowak, M.A. (2006). Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge, MA.10.2307/j.ctvjghw98Search in Google Scholar

Nowell, P.C. (1976). The clonal evolution of tumor cell populations. Science 194: 23–28, https://doi.org/10.1126/science.959840.Search in Google Scholar PubMed

Pich, O., Muiños, F., Lolkema, M.P., Steeghs, N., Gonzalez-Perez, A., and Lopez-Bigas, N. (2019). The mutational footprints of cancer therapies. Nat. Genet. 51: 1732–1740, https://doi.org/10.1038/s41588-019-0525-5.Search in Google Scholar PubMed PubMed Central

Ramazzotti, D., Caravagna, G., Loohuis, L.O., Graudenzi, A., Korsunsky, I., Mauri, G., Antoniotti, M., and Mishra, B. (2015). Capri: efficient inference of cancer progression models from cross-sectional data. Bioinformatics 31: 3016–3026, https://doi.org/10.1093/bioinformatics/btv296.Search in Google Scholar PubMed

Ramazzotti, D., Lal, A., Liu, K., Tibshirani, R., and Sidow, A. (2019). De novo mutational signature discovery in tumor genomes using sparse signatures. bioRxiv 384834.Search in Google Scholar

Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B.S., and Swanton, C. (2016). DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17: 1–11, https://doi.org/10.1186/s13059-016-0893-4.Search in Google Scholar PubMed PubMed Central

Rosenthal, R., McGranahan, N., Herrero, J., and Swanton, C. (2017). Deciphering genetic intratumor heterogeneity and its impact on cancer evolution. Annu. Rev. Cell Biol. 1: 223–240, https://doi.org/10.1146/annurev-cancerbio-042516-011348.Search in Google Scholar

Roth, A., Khattra, J., Yap, D., Wan, A., Laks, E., Biele, J., Ha, G., Aparicio, S., Bouchard-Côté, A., and Shah, S.P. (2014). Pyclone: statistical inference of clonal population structure in cancer. Nat. Methods 11: 396–398, https://doi.org/10.1038/nmeth.2883.Search in Google Scholar PubMed PubMed Central

Schumacher, T.N. and Schreiber, R.D. (2015). Neoantigens in cancer immunotherapy. Science 348: 69–74, https://doi.org/10.1126/science.aaa4971.Search in Google Scholar PubMed

Shackleton, M., Quintana, E., Fearon, E.R., and Morrison, S.J. (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138: 822–829, https://doi.org/10.1016/j.cell.2009.08.017.Search in Google Scholar

Sottoriva, A., Kang, H., Ma, Z., Graham, T.A., Salomon, M.P., Zhao, J., Marjoram, P., Siegmund, K., Press, M.F., Shibata, D., et al.. (2015). A big bang model of human colorectal tumor growth. Nat. Genet. 47: 209–216, https://doi.org/10.1038/ng.3214.Search in Google Scholar

Ståhl, P.L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al.. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353: 78–82, https://doi.org/10.1126/science.aaf2403.Search in Google Scholar

Stuart, T. and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20: 257–272, https://doi.org/10.1038/s41576-019-0093-7.Search in Google Scholar

Tavaré, S. (1984). Line-of-descent and genealogical processes, and their applications in population genetics models. Theor. Popul. Biol. 26: 119–164, https://doi.org/10.1016/0040-5809(84)90027-3.Search in Google Scholar

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. (2020). Pan-cancer analysis of whole genomes. Nature 578: 82.10.1038/s41586-020-1969-6Search in Google Scholar PubMed PubMed Central

Toffalori, C., Zito, L., Gambacorta, V., Riba, M., Oliveira, G., Bucci, G., Barcella, M., Spinelli, O., Greco, R., Crucitti, L., et al.. (2019). Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 25: 603–611, https://doi.org/10.1038/s41591-019-0400-z.Search in Google Scholar PubMed

Topol, E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25: 44–56, https://doi.org/10.1038/s41591-018-0300-7.Search in Google Scholar PubMed

Tung, H.-R., and Durrett, R. (2020). Signatures of neutral evolution in exponentially growing tumors: a theoretical perspective. bioRxiv 1–12.10.1371/journal.pcbi.1008701Search in Google Scholar PubMed PubMed Central

Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Chambers, T., Lopez, J.I., Nicol, D., O’Brien, T., Larkin, J., Horswell, S., et al.. (2018a). Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173: 581–594, https://doi.org/10.1016/j.cell.2018.03.057.Search in Google Scholar PubMed PubMed Central

Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Horswell, S., Chambers, T., O’Brien, T., Lopez, J.I., Watkins, T.B., Nicol, D., et al.. (2018b). Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173: 595–610, https://doi.org/10.1016/j.cell.2018.03.043.Search in Google Scholar PubMed PubMed Central

Turajlic, S., Sottoriva, A., Graham, T., and Swanton, C. (2019). Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20: 404–416, https://doi.org/10.1038/s41576-019-0114-6.Search in Google Scholar PubMed

Vago, L., Perna, S.K., Zanussi, M., Mazzi, B., Barlassina, C., Stanghellini, M.T.L., Perrelli, N.F., Cosentino, C., Torri, F., Angius, A., et al.. (2009). Loss of mismatched HLA in leukemia after stem-cell transplantation. NEJM 361: 478–488, https://doi.org/10.1056/nejmoa0811036.Search in Google Scholar

Vickovic, S., Eraslan, G., Salmén, F., Klughammer, J., Stenbeck, L., Schapiro, D., Äijö, T., Bonneau, R., Bergenstråhle, L., Navarro, J.F., et al.. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16: 987–990, https://doi.org/10.1038/s41592-019-0548-y.Search in Google Scholar PubMed PubMed Central

Williams, M., Werner, B., Heide, T., Curtis, C., Barnes, C., Sottoriva, A., and Graham, T. (2018). Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50: 895, https://doi.org/10.1038/s41588-018-0128-6.Search in Google Scholar PubMed PubMed Central

Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A., and Sottoriva, A. (2016). Identification of neutral tumor evolution across cancer types. Nat. Genet. 48: 238–244, https://doi.org/10.1038/ng.3489.Search in Google Scholar PubMed PubMed Central

Williams, M.J., Zapata, L., Werner, B., Barnes, C.P., Sottoriva, A., and Graham, T.A. (2020). Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dn/ds ratios. Elife 9: e48714, https://doi.org/10.7554/elife.48714.Search in Google Scholar

Zapata, L., Pich, O., Serrano, L., Kondrashov, F.A., Ossowski, S., and Schaefer, M.H. (2018). Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19: 1–17, https://doi.org/10.1186/s13059-018-1434-0.Search in Google Scholar PubMed PubMed Central

Zapata, L., Caravagna, G., Williams, M., Lakatos, E., Abdul-Jabbar, K., Werner, B., Graham, T.A., and Sottoriva, A. (2020). dN/dS dynamics quantify tumour immunogenicity and predict response to immunotherapy. bioRxiv 1–41.10.1101/2020.07.21.215038Search in Google Scholar

Received: 2020-12-05
Accepted: 2020-12-06
Published Online: 2020-12-21

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/sagmb-2020-0075/html
Scroll to top button