Skip to main content
Log in

Bayesian estimation of the stochastic volatility model with double exponential jumps

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

This paper generalizes the stochastic volatility model to allow for the double exponential jumps. To derive the jumps and time-varying volatility in returns, we implement an efficient Markov chain Monte Carlo approach based on the band and sparse matrix algorithms used in Chan and Hsiao (SSRN Electron J., 2013, https://doi.org/10.2139/ssrn.2359838) to estimate this model. We illustrate the the methodology using the daily data for the Shanghai Composite Index, Hangseng Index, Nikkei 225 Index and Kospi Index. We find that the stochastic volatility model with double exponential jumps provide better fitness in sample period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asgharian, H., & Bengtsson, C. (2006). Jump Spillover in International Equity Mar kets. Journal of Financial Econometrics, 4(2), 167–203.

    Article  Google Scholar 

  • Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review of Financial Studies, 9, 69–107.

    Article  Google Scholar 

  • Boscher, H., Fronk, E. M., & Pigeot, I. (2000). Forecasting interest rates volatilities by GARCH (1,1) and stochastic volatility models. Statistical Papers, 41(4), 409–422.

    Article  Google Scholar 

  • Chan, J. C. C., & Hsiao, C. Y. L. (2013). Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2359838.

  • Das, S. R., & Foresi, S. (1996). Exact Solutions for Bond and Option Prices with Systematic Jump Risk. Review of Derivatives Research, 1, 7–24.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007.

  • Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in voltility and returns. Journal of Finance, 58(3), 1269–1300.

  • Fuh, C. D., Luo, S. F., & Yen, J. F. (2013). Pricing discrete path-dependent options under a double exponential jump-diffusion model. Journal of Banking and Finance, 37, 2702–2713.

    Article  Google Scholar 

  • Heynen, R. C., & Kat, H. M. (1994). Volatility prediction: A comparison of stochastic volatility, GARCH(1,1) and EGARCH(1,1) models. The Journal of Derivatives, 2(2), 50–65.

  • Jacquier, E., Polson, N. G., & Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics, 12(4), 371–417.

    Google Scholar 

  • Johannes, M., Kumar, R. and Polson, N. (1999). State Dependent Jump Models: How do U.S. Equity Markets Jump? Working Paper.

  • Kou, S. G. (2002). A jump diffusion model for option pricing. Management Science, 48(8), 1086–1101.

    Article  Google Scholar 

  • Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management Science, 50, 1178–1192.

    Article  Google Scholar 

  • Li, H., Wells, M., & Yu, C. (2008). A bayesian analysis of return dynamics with levy jumps. Review of Financial Studies, 21, 2345–2378.

    Article  Google Scholar 

  • Chan, Joshua C. C., & Grant, Angelia L. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 54, 182–189.

    Article  Google Scholar 

  • Numatsi, A., & Rengifo, E. W. (2010). Stochastic volatility model with jumps in returns and volatility: An R-Package implementation. Lecture Notes in Statistics, 196, 191–201.

    Article  Google Scholar 

  • Yu, J. (2002). Forecasting volatility in the New Zealand stock market. Applied Financial Economics., 12(3), 193–202.

    Article  Google Scholar 

  • Ramezani, C. A., & Zeng, Y. (2007). Maximum likelihood estimation of the double exponential jump-diffusion process. Annals of Finance, 3(4), 487–507.

    Article  Google Scholar 

  • Scott, L. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods. Mathematical Finance, 7, 413–426.

    Article  Google Scholar 

  • Taylor, S. J. (1986). Modeling Financial Time Series. New York: John Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we focus on sampling from the conditional posterior \(p(h|\Theta ,J,Z,Y)\) following Chan and Hsiao (2013). Since

$$\begin{aligned} p(h|\Theta ,J,Z,Y)\propto p(Y|\Theta , h, J, Z)p(h|\Theta ), \end{aligned}$$
(13)

we first derive the conditional densities \(p(Y|\Theta , h, J, Z)\) and \(p(h|\Theta )\). Equation (2) can be written as

$$\begin{aligned} h_t-\phi _hh_{t-1}=(1-\phi _h)\mu _h+\sigma _h\varepsilon _t, \end{aligned}$$
(14)

and let \(H_{\phi _h}\) be a lower triangular matrix:

$$\begin{aligned} H_{\phi _h}= \left( \begin{array}{ccccc} 1 &{} 0 &{} 0 &{} \ldots &{}0\\ -\phi _h &{} 1 &{} 0 &{} \ldots &{}0\\ 0&{} -\phi _h &{} 1 &{} \ldots &{}0\\ \ldots &{} \ldots &{} \ldots &{} \ldots &{} \ldots \\ 0 &{} 0 &{} \ldots &{} -\phi _h &{} 1 \end{array} \right) . \end{aligned}$$

Then (14) can be expressed by matrix:

$$\begin{aligned} H_{\phi _h}h=\tilde{\delta _h}+\xi _t, \xi _t\sim N(0,\Sigma _h), \end{aligned}$$
(15)

where \(\tilde{\delta _h}=(\mu _h, (1-\phi _h)\mu _h, \ldots , (1-\phi _h)\mu _h)'\), \(\Sigma _h=\mathrm{diag}(\frac{\sigma _h^2}{1-\phi _h^2}, \sigma _h^2, \ldots , \sigma _h^2).\) Hence we have \((h|\Theta )\sim N(\delta _h, (H_{\phi _h}'\Sigma _h^{-1}H_{\phi _h})^{-1})\), where \(\delta _h =H_{\phi _h}^{-1}\tilde{\delta _h}\). Then its log-density is

$$\begin{aligned} \log p(h|\Theta )=-\frac{1}{2}(h'H_{\phi _h}'\Sigma _h^{-1}H_{\phi _h}h -2h'H_{\phi _h}'\Sigma _h^{-1}H_{\phi _h}\delta _h)+c_1, \end{aligned}$$
(16)

where \(c_1\) is a constant independent of h. On the other hand,

$$\begin{aligned} \log p(Y|\Theta , h, J, Z)=\sum \limits _{t=1}^T \log p(y_t|\Theta , h_t, J_t, Z_t) \end{aligned}$$
(17)

and

$$\begin{aligned} \log p(y_t|\Theta , h_t, J_t, Z_t)=-\frac{1}{2}\log (2\pi )-\frac{1}{2}h_t-\frac{1}{2}e^{-h_t}(y_t-\mu -J_tZ_t)^2. \end{aligned}$$
(18)

We can compute

$$\begin{aligned}&f_t=\frac{\partial \log p(y_t|\Theta , h_t, J_t, Z_t)}{\partial h_t}|_{h_t ={\tilde{h}}_t}=-\frac{1}{2}+\frac{1}{2}e^{-{\tilde{h}}_t}(y_t-\mu -J_tZ_t)^2,\\&G_t=-\frac{\partial ^2\log p(y_t|\Theta , h_t, J_t, Z_t)}{\partial h_t^2}|_{h_t={\tilde{h}}_t}=\frac{1}{2}e^{-{\tilde{h}}_t}(y_t-\mu -J_tZ_t)^2, \end{aligned}$$

where \({\tilde{h}}_t\) is chosen to be the mode of \(p(h|\Theta ,J,Z,Y)\). Then the second order Taylor expansion of \(\log p(y_t|\Theta , h_t, J_t, Z_t)\) at point \({\tilde{h}}\) is

$$\begin{aligned} p(Y|\Theta , h, J, Z)\approx & {} \log p(Y|\Theta , {\tilde{h}}, J, Z) +(h-{\tilde{h}})'f-\frac{1}{2}(h-{\tilde{h}})'G(h-{\tilde{h}})\nonumber \\= & {} \frac{1}{2}(h'Gh-2h'(f+G{\tilde{h}}))+c_2, \end{aligned}$$
(19)

where \(c_2\) is a constant independent of h, \(f=(f_1, \ldots , f_T)'\), and \(G=(G_1, \ldots , G_T)'\). Lastly, combining (16) and (19), we have

$$\begin{aligned} \log p(h|\Theta ,J,Z,Y)= & {} \log p(Y|\Theta , h, J, Z)+\log p(h|\Theta )\nonumber \\= & {} -\frac{1}{2}(h'K_hh-2h'k_h)+c_3, \end{aligned}$$
(20)

where \(c_3\) is a constant independent of h, \(K_h=H_{\phi _h}'\Sigma _h^{-1}H_{\phi _h}+G\), and \(k_h=f+G{\tilde{h}}+H_{\phi _h}'\Sigma _h^{-1}H_{\phi _h}\delta _h\). Therefore, \(h|_{\Theta ,J,Z, Y}\sim N({\hat{h}}, K_h^{-1})\), where \({\hat{h}}=K_h^{-1}k_h.\) Because \(K_h\) is a band matrix, \({\hat{h}}\) can be computed quickly.

The estimations of other parameters \((\mu , \mu _h, \phi _h,\sigma _h^2)\) are the same as those of the standard stochastic volatility model. Their posterior distributions are as follows:

\(\bullet \) Posterior of \(\mu \). \(\mu \sim N({\hat{\mu }}, D_{\mu })\), where

$$\begin{aligned}&{\hat{\mu }}=D_{\mu }\left( \frac{\mu _0}{V_{\mu }}+\sum \limits _{t=1}^T \frac{y_t-J_tZ_t}{e^{h_t}}\right) ,\\&D_{\mu }=\left( \frac{1}{V_{\mu }}+\sum \limits _{t=1}^T e^{-h_t}\right) ^{-1}. \end{aligned}$$

\(\bullet \) Posterior of \(\mu _h\). \(\mu _h\sim N({\hat{\mu }}_h, D_{\mu _h})\), where

$$\begin{aligned}&{\hat{\mu }}_h=D_{\mu _h}\left( \frac{\mu _{h0}}{V_{\mu _h}}+X_{\mu _h}'\Sigma _h^{-1} Z_{\mu _h}\right) ,\\&D_{\mu _h}=\left( \frac{1}{V_{\mu _h}}+X_{\mu _h}'\Sigma _h^{-1}X_{\mu _h}\right) ^{-1},\\&X_{\mu _h}=(1,1-\phi _h, \ldots ,1-\phi _h)',\\&Z_{\mu _h}=(h_1, h_2-\phi _hh_1, \ldots , h_T-\phi _hh_{T-1})'. \end{aligned}$$

\(\bullet \) Posterior of \(\phi _h\). \(\phi _h\sim N(\hat{\phi _h}, D_{\phi _h})1(|\phi _h|<1)\), where

$$\begin{aligned}&\hat{\phi _h}_h=D_{\phi _h}(\frac{\phi _{h_0}}{V_{\phi _h}} +\frac{X_{\phi _h}'Z_{\phi _h}}{\sigma _h^2}),\\&D_{\phi _h}=(\frac{1}{V_{\phi _h}}+\frac{X_{\phi _h}'X_{\mu _h}}{\sigma _h^2})^{-1},\\&X_{\phi _h}=(h_1-\mu _h, \ldots ,h_{T-1}-\mu _h)',\\&Z_{\mu _h}=(h_2-\mu _h, \ldots ,h_{T}-\mu _h)'. \end{aligned}$$

\(\bullet \) Posterior of \(\sigma _h^2\). \(\sigma _h^2\sim IG(\nu +\frac{T}{2}, {\hat{s}})\), where

$$\begin{aligned} {\hat{s}}=s+\frac{1}{2}(h_1-\mu _h)^2(1-\phi _h^2)+\frac{1}{2}\sum \limits _{t=2}^T(h_t-\phi _hh_{t-1}-(1-\phi _h)\mu _h)^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Bayesian estimation of the stochastic volatility model with double exponential jumps. Rev Deriv Res 24, 157–172 (2021). https://doi.org/10.1007/s11147-020-09173-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-020-09173-1

Keywords

JEL Classification

Navigation